Back-contact perovskite solar cell fabrication via microsphere lithography

被引:7
|
作者
Deng, Siqi [1 ,2 ]
Tan, Boer [1 ,2 ]
Chesman, Anthony S. R. [3 ,4 ]
Lu, Jianfeng [1 ,2 ,5 ]
McMeekin, David P. [1 ,2 ]
Ou, Qingdong [6 ]
Scully, Andrew D. [3 ]
Raga, Sonia R. [1 ,2 ,7 ]
Rietwyk, Kevin J. [1 ,2 ]
Weissbach, Anton [1 ,2 ,8 ]
Zhao, Boya [1 ,2 ]
Voelcker, Nicolas H. [3 ,4 ,9 ,10 ]
Cheng, Yi-Bing [11 ]
Lin, Xiongfeng [1 ,2 ]
Bach, Udo [1 ,2 ,3 ,4 ]
机构
[1] Monash Univ, Dept Chem & Biol Engn, Clayton, Vic 3800, Australia
[2] Monash Univ, ARC Ctr Excellence Exciton Sci, Clayton, Vic 3800, Australia
[3] CSIRO Mfg, Clayton, Vic 3168, Australia
[4] Melbourne Ctr Nanofabricat, Victorian Node Australian Natl Fabricat Facil, Clayton, Vic 3168, Australia
[5] Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R China
[6] Monash Univ, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia
[7] Catalan Inst Nanosci & Nanotechnol ICN2, Barcelona 08193, Spain
[8] Tech Univ Dresden, Inst Angew Photophys, D-01062 Dresden, Germany
[9] Monash Univ, Monash Inst Pharmaceut Sci, Drug Delivery Disposit & Dynam, 381 Royal Parade, Parkville, Vic 3052, Australia
[10] INM Leibniz Inst New Mat, Campus D2 2, D-66123 Saarbrucken, Germany
[11] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
基金
澳大利亚研究理事会;
关键词
Perovskite solar cells; Microsphere lithography; Honeycomb; -shaped; Back -contact electrodes; Scalability; Charge transport distance; TRANSPORT LAYERS; EFFICIENT; ELECTRODES; UNIFORM;
D O I
10.1016/j.nanoen.2022.107695
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Back-contact electrodes for hybrid organic-inorganic perovskite solar cells (PSCs) eliminate the parasitic absorption losses caused by the transparent conductive electrodes that are inherent to conventional sandwicharchitecture devices. However, the fabrication methods for these unconventional architectures rely heavily on expensive photolithography, which limits scalability. Herein, we present an alternative cost-effective microfabrication technique in which the conventional photolithography process is replaced by microsphere lithography in which a close-packed polystyrene microsphere monolayer acts as the patterning mask for the honeycomb-shaped electrodes. A comprehensive comparison between photolithography and microsphere lithography fabrication techniques was conducted. Using microsphere lithography, we achieve highly efficient devices having a stabilized power conversion efficiency (PCE) of 8.6%, twice the reported value using photolithography. Microsphere lithography also enabled the fabrication of the largest back-contact PSC to date, having an active area of 0.75 cm2 and a stabilized PCE of 2.44%.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Performance optimization of back-contact perovskite solar cells with quasi-interdigitated electrodes
    Shalenov, Erik O.
    Dzhumagulova, Karlygash N.
    Ng, Annie
    Jumabekov, Askhat N.
    SOLAR ENERGY, 2020, 205 : 102 - 108
  • [22] Back-contact perovskite solar cells with honeycomb-like charge collecting electrodes
    Hou, Qicheng
    Bacal, Dorota
    Jumabekov, Askhat N.
    Li, Wei
    Wang, Ziyu
    Lin, Xiongfeng
    Ng, Soon Hock
    Tan, Boer
    Bao, Qiaoliang
    Chesman, Anthony S. R.
    Cheng, Yi-Bing
    Bach, Udo
    NANO ENERGY, 2018, 50 : 710 - 716
  • [23] Transparent Quasi-Interdigitated Electrodes for Semitransparent Perovskite Back-Contact Solar Cells
    DeLuca, Giovanni
    Jumabekov, Askhat N.
    Hu, Yinghong
    Simonov, Alexandr N.
    Lu, Jianfeng
    Tan, Boer
    Adbyaksa, Gede W. P.
    Garnett, Erik C.
    Reichmanis, Elsa
    Chesman, Anthony S. R.
    Bach, Udo
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (09): : 4473 - 4478
  • [24] Quasi-Interdigitated Back-Contact Perovskite Solar Cells with Enhanced Light Confinement
    Wang, Ruixiao
    Zhang, Xinpeng
    Zhang, Zemin
    Wang, Siyi
    Zhong, Zijian
    Ma, Linchuan
    Li, Yuelong
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (20): : 9186 - 9193
  • [25] Back-contact perovskite light-emitting diodes
    Parkhomenko, Hryhorii P.
    Jumabekov, Askhat N.
    AIP ADVANCES, 2024, 14 (02)
  • [26] In Situ Back-Contact Passivation Improves Photovoltage and Fill Factor in Perovskite Solar Cells
    Tan, Furui
    Tan, Hairen
    Saidaminov, Makhsud I.
    Wei, Mingyang
    Liu, Mengxia
    Mei, Anyi
    Li, Peicheng
    Zhang, Bowen
    Tan, Chih-Shan
    Gong, Xiwen
    Zhao, Yongbiao
    Kirmani, Ahmad R.
    Huang, Ziru
    Fan, James Z.
    Quintero-Bermudez, Rafael
    Kim, Junghwan
    Zhao, Yicheng
    Voznyy, Oleksandr
    Gao, Yueyue
    Zhang, Feng
    Richter, Lee J.
    Lu, Zheng-Hong
    Zhang, Weifeng
    Sargent, Edward H.
    ADVANCED MATERIALS, 2019, 31 (14)
  • [27] MOLYBDENUM BACK-CONTACT OPTIMIZATION FOR CIGS THIN FILM SOLAR CELL
    Ray, J. R.
    Shah, N. M.
    Desai, M. S.
    Panchal, C. J.
    JOURNAL OF NANO- AND ELECTRONIC PHYSICS, 2011, 3 (01) : 766 - 775
  • [28] Computer simulation and performance analysis of metal–semiconductor–metal back-contact perovskite solar cells
    Iliyas T. Dossayev
    Assylan Akhanuly
    Hryhorii P. Parkhomenko
    Karlygash N. Dzhumagulova
    Annie Ng
    Erik O. Shalenov
    Askhat N. Jumabekov
    Journal of Computational Electronics, 2025, 24 (3)
  • [29] Study on the cell-to-module encapsulation losses of back-contact solar cell modules
    Zuo, Yan
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2025, 17 (01)
  • [30] TWO-DIMENSIONAL ANALYSIS OF THE INTERDIGITED BACK-CONTACT SOLAR-CELL
    CHIN, DJ
    NAVON, DH
    SOLID-STATE ELECTRONICS, 1981, 24 (02) : 109 - 114