Stochastic maximum-likelihood DOA estimation in the presence of unknown nonuniform noise

被引:107
|
作者
Chen, Chiao En [1 ]
Lorenzelli, Flavio [1 ]
Hudson, Ralph. E. [1 ]
Yao, Kung [1 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
direction-of-arrival (DOA) estimation; nonuniform noise; sensor array processing; stochastic maximum likelihood (ML) algorithm;
D O I
10.1109/TSP.2008.917364
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This correspondence investigates the direction-of-arrival (DOA) estimation of multiple narrowband sources in the presence of nonuniform white noise with an arbitrary diagonal covariance matrix. While both the deterministic and stochastic Cramer-Rao bound (CRB) and the deterministic maximum-likelihood (ML) DOA estimator under this model have been derived by Pesavento and Gershman, the stochastic ML DOA estimator under the same setting is still not available in the literature. In this correspondence, a new stochastic ML DOA estimator is derived. Its implementation is based on an iterative procedure which concentrates the log-likelihood function with respect to the signal and noise nuisance parameters in a stepwise fashion. A modified inverse iteration algorithm is also presented for the estimation of the noise parameters. Simulation results have shown that the proposed algorithm is able to provide significant performance improvement over the conventional uniform ML estimator in nonuniform noise environments and require only a few iterations to converge to the nonuniform stochastic CRB.
引用
收藏
页码:3038 / 3044
页数:7
相关论文
共 50 条
  • [31] 2-D DOA estimation for sparse uniform circular array in presence of unknown nonuniform noise
    Pan, Jie
    Zhou, Jianjiang
    Wang, Fei
    [J]. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2011, 32 (03): : 448 - 456
  • [32] MAXIMUM-LIKELIHOOD STACKING IN WHITE GAUSSIAN-NOISE WITH UNKNOWN VARIANCES
    GIMLIN, DR
    KEENER, MS
    LAWRENCE, JF
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1982, 20 (01): : 91 - 98
  • [33] Stochastic maximum-likelihood method for MIMO propagation parameter estimation
    Ribeiro, Cassio B.
    Ollila, Esa
    Koivunen, Visa
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (01) : 46 - 55
  • [34] STOCHASTIC VOLATILITY IN ASSET PRICES ESTIMATION WITH SIMULATED MAXIMUM-LIKELIHOOD
    DANIELSSON, J
    [J]. JOURNAL OF ECONOMETRICS, 1994, 64 (1-2) : 375 - 400
  • [35] A stochastic approximation algorithm for maximum-likelihood estimation with incomplete data
    Gu, MG
    Li, SL
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1998, 26 (04): : 567 - 582
  • [36] The Maximum-Likelihood Noise Magnitude Estimation in ADC Linearity Measurements
    Gendai, Yuji
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2010, 59 (07) : 1746 - 1754
  • [37] PINT: Maximum-likelihood Estimation of Pulsar Timing Noise Parameters
    Susobhanan, Abhimanyu
    Kaplan, David L.
    Archibald, Anne M.
    Luo, Jing
    Ray, Paul S.
    Pennucci, Timothy T.
    Ransom, Scott M.
    Agazie, Gabriella
    Fiore, William
    Larsen, Bjorn
    O'Neill, Patrick
    van Haasteren, Rutger
    Anumarlapudi, Akash
    Bachetti, Matteo
    Bhakta, Deven
    Champagne, Chloe A.
    Cromartie, H. Thankful
    Demorest, Paul B.
    Jennings, Ross J.
    Kerr, Matthew
    Levina, Sasha
    McEwen, Alexander
    Shapiro-Albert, Brent J.
    Swiggum, Joseph K.
    [J]. ASTROPHYSICAL JOURNAL, 2024, 971 (02):
  • [38] Performance estimation for maximum-likelihood detection for channels with transition noise
    Chen, ML
    Trachtenberg, EA
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (03) : 754 - 762
  • [40] MAXIMUM-LIKELIHOOD ESTIMATION OF PARAMETERS IN THE INVERSE GAUSSIAN DISTRIBUTION, WITH UNKNOWN ORIGIN
    CHENG, RCH
    AMIN, NAK
    [J]. TECHNOMETRICS, 1981, 23 (03) : 257 - 263