The Moyal-Lie theory of phase space quantum mechanics

被引:7
|
作者
Hakioglu, T [1 ]
Dragt, AJ
机构
[1] Bilkent Univ, Dept Phys, TR-06533 Ankara, Turkey
[2] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
来源
关键词
D O I
10.1088/0305-4470/34/34/307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A Lie algebraic approach to the unitary transformations in Weyl quantization is discussed. This approach, being formally equivalent to the star -quantization, is an extension of the classical Poisson-Lie theory and can be used as an efficient tool in the quantum phase space transformation theory.
引用
收藏
页码:6603 / 6615
页数:13
相关论文
共 50 条
  • [21] Superintegrable systems in quantum mechanics and classical Lie theory
    Sheftel, MB
    Tempesta, P
    Winternitz, P
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (02) : 659 - 673
  • [22] On Quantum Mechanics on Noncommutative Quantum Phase Space
    A.E.F.Djema
    H.Smail
    [J]. Communications in Theoretical Physics, 2004, 41 (06) : 837 - 844
  • [23] On quantum mechanics on noncommutative quantum phase space
    Djemaï, AEF
    Smail, H
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 41 (06) : 837 - 844
  • [24] Semiclassical Moyal quantum mechanics for atomic systems
    McQuarrie, BR
    Osborn, TA
    Tabisz, GC
    [J]. PHYSICAL REVIEW A, 1998, 58 (04): : 2944 - 2961
  • [25] Perspectives: Quantum Mechanics on Phase Space
    J. A. Brooke
    F. E. Schroeck
    [J]. International Journal of Theoretical Physics, 2005, 44 : 1889 - 1904
  • [26] Quantum mechanics on phase space and teleportation
    Juba Messamah
    Franklin E. Schroeck
    Mahmoud Hachemane
    Abdallah Smida
    Amel H. Hamici
    [J]. Quantum Information Processing, 2015, 14 : 1035 - 1054
  • [27] Quantum mechanics on phase space and teleportation
    Messamah, Juba
    Schroeck, Franklin E., Jr.
    Hachemane, Mahmoud
    Smida, Abdallah
    Hamici, Amel H.
    [J]. QUANTUM INFORMATION PROCESSING, 2015, 14 (03) : 1035 - 1054
  • [28] QUANTUM-MECHANICS ON PHASE SPACE
    HUGUENIN, P
    [J]. HELVETICA PHYSICA ACTA, 1973, 46 (04): : 468 - 468
  • [29] Phase space quantum mechanics - Direct
    Nasiri, S.
    Sobouti, Y.
    Taati, F.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (09)
  • [30] Perspectives: Quantum mechanics on phase space
    Brooke, JA
    Schroeck, FE
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2005, 44 (11) : 1889 - 1904