Cost efficiency of African airports using a finite mixture model

被引:15
|
作者
Barros, Carlos Pestana [1 ,2 ,3 ]
机构
[1] Univ Tecn Lisboa, Inst Super Econ & Gestao, P-1249078 Lisbon, Portugal
[2] Univ Tecn Lisboa, UECE Res Unit Complex & Econ, P-1249078 Lisbon, Portugal
[3] Univ Tecn Lisboa, CESA Ctr African & Dev Studies, P-1249078 Lisbon, Portugal
关键词
Africa; Airports; Stochastic cost frontier; Latent class model; Technical efficiency; Panel data; DATA ENVELOPMENT ANALYSIS; FRONTIER PRODUCTION FUNCTION; MAJOR AIRPORTS; PANEL-DATA; PERFORMANCE EVALUATION; PRODUCTIVITY GROWTH; BENCHMARKING; DEA; HETEROGENEITY; PRIVATIZATION;
D O I
10.1016/j.tranpol.2011.05.001
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper evaluates the operational activities of African airports using a finite mixture model that allows us to control for unobserved heterogeneity. In doing so, a stochastic frontier latent class model, which allows for the existence of different technologies, is adopted to estimate cost frontiers. This procedure not only enables us to identify different groups of African airports analysed from Angola and Mozambique, but also permits the analysis of their cost efficiency. The main result is that three groups are identified in the sample, each equipped with completely different "technologies", suggesting that distinct business strategies need to be adapted to the characteristics of the airports. Some managerial implications are developed. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:807 / 813
页数:7
相关论文
共 50 条
  • [31] Evaluation of the Efficiency of Regional Airports Using Data Envelopment Analysis
    Maria Montoya-Quintero, Diana
    Lucia Larrea-Serna, Olga
    Alberto Jimenez-Builes, Jovani
    [J]. INFORMATICS-BASEL, 2022, 9 (04):
  • [32] Assessing operational efficiency of airports with high levels of low-cost carrier traffic
    Pyrialakou, V. Dimitra
    Karlaftis, Matthew G.
    Michaelides, Panayotis G.
    [J]. JOURNAL OF AIR TRANSPORT MANAGEMENT, 2012, 25 : 33 - 36
  • [33] Relative trajectory cost estimation for CTOP applications using multivariate nonparametric finite mixture logit
    Tereshchenko I.
    Hansen M.
    [J]. CEAS Aeronautical Journal, 2020, 11 (2) : 367 - 377
  • [34] Understanding relative efficiency among airports: A general dynamic model for distinguishing technical and allocative efficiency
    Assaf, A. George
    Gillen, David
    Tsionas, Efthymios G.
    [J]. TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2014, 70 : 18 - 34
  • [35] Classifying and Mapping Potential Distribution of Forest Types Using a Finite Mixture Model
    Attorre, Fabio
    Francesconi, Fabio
    Sanctis, Michele De
    Alfo, Marco
    Martella, Francesca
    Valenti, Roberto
    Vitale, Marcello
    [J]. FOLIA GEOBOTANICA, 2014, 49 (03) : 313 - 335
  • [36] Classifying and Mapping Potential Distribution of Forest Types Using a Finite Mixture Model
    Fabio Attorre
    Fabio Francesconi
    Michele De Sanctis
    Marco Alfò
    Francesca Martella
    Roberto Valenti
    Marcello Vitale
    [J]. Folia Geobotanica, 2014, 49 : 313 - 335
  • [37] Finite Mixture Model: Prediction of Time Series Data Using Bayesian Method
    Phoong, S. Y.
    Phoong, S. W.
    Phoong, K. H.
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (02): : 175 - 184
  • [38] Pricing fraud detection in online shopping malls using a finite mixture model
    Kim, Kwanho
    Choi, Yerim
    Park, Jonghun
    [J]. ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS, 2013, 12 (03) : 195 - 207
  • [39] Volume data coding based on region segmentation using finite mixture model
    Ichimura, N
    [J]. INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, PROCEEDINGS - VOL III, 1996, : 363 - 366
  • [40] Maximum likelihood pixel labeling using a spatially variant finite mixture model
    Gopal, SS
    Hebert, TJ
    [J]. 1996 IEEE NUCLEAR SCIENCE SYMPOSIUM - CONFERENCE RECORD, VOLS 1-3, 1997, : 1723 - 1727