Hydrothermal liquefaction (HTL) is a promising thermochemical process to treat wet feedstocks and convert them to chemicals and fuels. In this study, the effects of final temperature (300, 325, and 350 degrees C), reaction time (30 and 60 min), rice-straw-to-water ratio (1:1, 1:5, 1:10, and 1:15 (wt./wt.)), methanol-to-water ratio (0:100, 25:75, 50:50, and 75:25 (vol.%/vol.%)), and alkali catalysts (KOH, NaOH, and K2CO3) on product yields, composition of bio-crude, higher heating value (HHV) of bio-crude and bio-char, and energy recovery on HTL of rice straw are investigated. At the optimal processing condition corresponding to the final temperature of 300 degrees C, 60 min reaction time, and rice-straw-to-water ratio of 1:10 at a final pressure of 18 MPa, the bio-crude yield was 12.3 wt.% with low oxygen content (14.2 wt.%), high HHV (35.3 MJ/kg), and good energy recovery (36%). The addition of methanol as co-solvent to water at 50:50 vol.%/vol.% improved the yield of bio-crude up to 36.8 wt.%. The selectivity to phenolic compounds was high (49%-58%) when only water was used as the solvent, while the addition of methanol reduced the selectivity to phenolics (13%-22%), and improved the selectivity to methyl esters (51%-73%), possibly due to esterification reactions. The addition of KOH further improved the yield of bio-crude to 40 wt.% in an equal composition of methanol:water at the optimal condition. The energy-consumption ratio was less than unity for the methanol and catalyst system, suggesting that the process is energetically feasible in the presence of a co-solvent.