NILPOTENCY, SOLVABILITY, AND THE TWISTING FUNCTION OF FINITE GROUPS

被引:1
|
作者
Kaplan, Gil [1 ]
机构
[1] Acad Coll Tel Aviv Yaffo, Sch Comp Sci, Tel Aviv, Israel
关键词
Conjugacy classes; Fitting subgroup; Solvability;
D O I
10.1080/00927871003752460
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group. For every natural number m, we define the twisting function tau : G(m) -> G(m) by tau(x(1),..., x(m)) = (x(1)(x2), x(2)(x3),..., x(m)(x1)). It is clear that for each normal subset C of G, the function tau : C-m -> C-m is well defined, for each natural number m. Let C be a conjugacy class of size n in G. We prove (Theorem 1) that C is contained in the Fitting subgroup if and only if tau : C-m -> C-m is a permutation, for all 1 <= m <= 2n. We prove further (Theorem 3) that if tau : G(2) -> G(2) is a permutation then G is solvable.
引用
收藏
页码:1722 / 1729
页数:8
相关论文
共 50 条