Wavelet-Based Energy Features for Glaucomatous Image Classification

被引:180
|
作者
Dua, Sumeet [1 ]
Acharya, U. Rajendra [2 ]
Chowriappa, Pradeep [1 ]
Sree, S. Vinitha [3 ]
机构
[1] Louisiana Tech Univ, Comp Sci Program, Ruston, LA 71272 USA
[2] Ngee Ann Polytech, Dept Elect & Commun Engn, Singapore 599489, Singapore
[3] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
关键词
Biomedical optical imaging; data mining; feature extraction; glaucoma; image texture; wavelet transforms; AUTOMATED DIAGNOSIS;
D O I
10.1109/TITB.2011.2176540
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Texture features within images are actively pursued for accurate and efficient glaucoma classification. Energy distribution over wavelet subbands is applied to find these important texture features. In this paper, we investigate the discriminatory potential of wavelet features obtained from the daubechies (db3), symlets (sym3), and biorthogonal (bio3.3, bio3.5, and bio3.7) wavelet filters. We propose a novel technique to extract energy signatures obtained using 2-D discrete wavelet transform, and subject these signatures to different feature ranking and feature selection strategies. We have gauged the effectiveness of the resultant ranked and selected subsets of features using a support vector machine, sequential minimal optimization, random forest, and naive Bayes classification strategies. We observed an accuracy of around 93% using tenfold cross validations to demonstrate the effectiveness of these methods.
引用
收藏
页码:80 / 87
页数:8
相关论文
共 50 条
  • [31] Wavelet-based medical image compression
    Kofidis, E
    Kolokotronis, N
    Vassilarakou, A
    Theodoridis, S
    Cavouras, D
    [J]. FUTURE GENERATION COMPUTER SYSTEMS, 1999, 15 (02) : 223 - 243
  • [32] Wavelet-based hyperspectral image estimation
    Atkinson, I
    Kamalabadi, F
    Jones, DL
    [J]. IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 743 - 745
  • [33] An Efficient Wavelet-Based Image Coder
    Brahimi, Tahar
    Laouir, Farid
    Kechacha, N.
    [J]. 2008 3RD INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES: FROM THEORY TO APPLICATIONS, VOLS 1-5, 2008, : 1018 - 1021
  • [34] Image restoration: The wavelet-based approach
    Ndjountche, T
    Unbehauen, R
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2003, 17 (01) : 151 - 162
  • [35] A color image retrieval method based on regional color moment and wavelet-based features
    Chan, YK
    Chang, CC
    [J]. PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON INFORMATION AND MANAGEMENT SCIENCES, 2002, 2 : 398 - 404
  • [36] Wavelet-based adaptive image deconvolution
    Figueiredo, MAT
    Nowak, RD
    [J]. 2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 1685 - 1688
  • [37] Wavelet-based fingerprint image retrieval
    Montoya Zegarra, Javier A.
    Leite, Neucimar J.
    Torres, Ricardo da Silva
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 227 (02) : 294 - 307
  • [38] A wavelet-based image fusion tutorial
    Pajares, G
    de la Cruz, JM
    [J]. PATTERN RECOGNITION, 2004, 37 (09) : 1855 - 1872
  • [39] Wavelet-based digital image watermarking
    Wang, HJM
    Su, PC
    Kuo, CCJ
    [J]. OPTICS EXPRESS, 1998, 3 (12): : 491 - 496
  • [40] Wavelet-based image segment representation
    Ying, L
    Ranganath, S
    Zhou, XF
    [J]. ELECTRONICS LETTERS, 2002, 38 (19) : 1091 - 1092