On Existentially Complete Triangle-Free Graphs

被引:0
|
作者
Letzter, Shoham [1 ]
Sahasrabudhe, Julian [1 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
关键词
D O I
10.1007/s11856-020-1982-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a positive integer k, we say that a graph is k-existentially complete if for every 0 <= a <= k, and every tuple of distinct vertices x(1), horizontal ellipsis , x(a), y(1), horizontal ellipsis , y(k-a), there exists a vertex z that is joined to all of the vertices x(1), horizontal ellipsis , x(a) and to none of the vertices y(1), horizontal ellipsis , y(k-a). While it is easy to show that the binomial random graph G(n,1/2) satisfies this property (with high probability) for k = (1 - o(1)) log(2)n, little is known about the "triangle-free" version of this problem: does there exist a finite triangle-free graph G with a similar "extension property"? This question was first raised by Cherlin in 1993 and remains open even in the case k = 4. We show that there are no k-existentially complete triangle-free graphs on n vertices with k>8, for n sufficiently large.
引用
收藏
页码:591 / 601
页数:11
相关论文
共 50 条
  • [1] On existentially complete triangle-free graphs
    Shoham Letzter
    Julian Sahasrabudhe
    [J]. Israel Journal of Mathematics, 2020, 236 : 591 - 601
  • [2] Triply Existentially Complete Triangle-Free Graphs
    Even-Zohar, Chaim
    Linial, Nati
    [J]. JOURNAL OF GRAPH THEORY, 2015, 78 (04) : 305 - 317
  • [3] Median graphs and triangle-free graphs
    Imrich, W
    Klavzar, S
    Mulder, HM
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (01) : 111 - 118
  • [4] Triangle-free equimatchable graphs
    Buyukcolak, Yasemin
    Ozkan, Sibel
    Gozupek, Didem
    [J]. JOURNAL OF GRAPH THEORY, 2022, 99 (03) : 461 - 484
  • [5] Complete solution to a conjecture on the Randic index of triangle-free graphs
    Li, Xueliang
    Liu, Jianxi
    [J]. DISCRETE MATHEMATICS, 2009, 309 (21) : 6322 - 6324
  • [6] ON MAXIMAL TRIANGLE-FREE GRAPHS
    ERDOS, P
    HOLZMAN, R
    [J]. JOURNAL OF GRAPH THEORY, 1994, 18 (06) : 585 - 594
  • [7] Triangle-free polyconvex graphs
    Isaksen, DC
    Robinson, B
    [J]. ARS COMBINATORIA, 2002, 64 : 259 - 263
  • [8] On the evolution of triangle-free graphs
    Steger, A
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (1-2): : 211 - 224
  • [9] On triangle-free projective graphs
    Hazan, S
    [J]. ALGEBRA UNIVERSALIS, 1996, 35 (02) : 185 - 196
  • [10] On triangle-free random graphs
    Luczak, T
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2000, 16 (03) : 260 - 276