Lagrangian relations and linear point billiards

被引:6
|
作者
Fejoz, Jacques [1 ,2 ]
Knauf, Andreas [3 ]
Montgomery, Richard [4 ]
机构
[1] Univ Paris 09, Paris, France
[2] Observ Paris, Paris, France
[3] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[4] UC Santa Cruz, Math Dept, 4111 McHenry, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
billiards; N-body; Lagrangian Relations; CAT(0); Hadamard space; generating families; SEMI-DISPERSING BILLIARDS; NUMBER;
D O I
10.1088/1361-6544/aa5b26
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the high-energy limit of the N-body problem we construct non-deterministic billiard process. The billiard table is the complement of a finite collection of linear subspaces within a Euclidean vector space. A trajectory is a constant speed polygonal curve with vertices on the subspaces and change of direction upon hitting a subspace governed by 'conservation of momentum' (mirror reflection). The itinerary of a trajectory is the list of subspaces it hits, in order. (A) Are itineraries finite? (B) What is the structure of the space of all trajectories having a fixed itinerary? In a beautiful series of papers Burago-Ferleger-Kononenko [BFK] answered (A) affirmatively by using non-smooth metric geometry ideas and the notion of a Hadamard space. We answer (B) by proving that this space of trajectories is diffeomorphic to a Lagrangian relation on the space of lines in the Euclidean space. Our methods combine those of BFK with the notion of a generating family for a Lagrangian relation.
引用
收藏
页码:1326 / 1355
页数:30
相关论文
共 50 条
  • [31] Holography, chiral Lagrangian and form factor relations
    Pietro Colangelo
    Juan Jose Sanz-Cillero
    Fen Zuo
    Journal of High Energy Physics, 2012
  • [32] Consistency relations for the Lagrangian halo bias and their implications
    Chuen Chan, Kwan
    Sheth, Ravi K.
    Scoccimarro, Roman
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 468 (02) : 2232 - 2248
  • [33] Extended Lagrangian formalism and the corresponding energy relations
    Musicki, D
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2004, 23 (06) : 975 - 991
  • [34] Lagrangian Grassmannians, CKP Hierarchy and Hyperdeterminantal Relations
    S. Arthamonov
    J. Harnad
    J. Hurtubise
    Communications in Mathematical Physics, 2023, 401 : 1337 - 1381
  • [35] The Inverse Problem of Linear Lagrangian Dynamics
    Salsa, Rubens Goncalves, Jr.
    Kawano, Daniel T.
    Ma, Fai
    Leitmann, George
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2018, 85 (03):
  • [36] Linear response theory and transient fluctuation relations for diffusion processes: a backward point of view
    Liu, Fei
    Tong, Huan
    Ma, Rui
    Ou-Yang, Zhong-can
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (49)
  • [37] Lagrangian Representations for Linear and Nonlinear Transport
    Bianchini S.
    Bonicatto P.
    Marconi E.
    Journal of Mathematical Sciences, 2021, 253 (5) : 642 - 659
  • [38] Lagrangian representation for fermionic linear optics
    Bravyi, S
    QUANTUM INFORMATION & COMPUTATION, 2005, 5 (03) : 216 - 238
  • [39] Lagrangian heuristics for the Linear Ordering Problem
    Belloni, A
    Lucena, A
    METAHEURISTICS: COMPUTER DECISION-MAKING, 2004, 86 : 37 - 63
  • [40] Linear Lagrangian systems of conservation laws
    Peng, Y. -J.
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON HYPERBOLIC PROBLEMS, 2008, : 833 - 840