On-line Redundancy Elimination in Evolving Fuzzy Regression Models using a Fuzzy Inclusion Measure

被引:0
|
作者
Lughofer, Edwin [1 ]
Huellermeier, Eyke [1 ]
机构
[1] Johannes Kepler Univ Linz, Dept Knowledge Based Math Syst, A-4040 Linz, Austria
关键词
evolving fuzzy models; incremental learning; regression; fuzzy inclusion; rule merging; fuzzy set merging; complexity reduction; INFERENCE SYSTEM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper tackles the problem of complexity reduction in evolving fuzzy regression models of the Takagi-Sugeno type. The incremental model adaptation process used to evolve such models over time, often produces redundancies such as overlapping rule antecedents. We propose the use of a fuzzy inclusion measure in order to detect such redundancies as well as a procedure for merging rules that are sufficiently similar. Experimental studies with two high-dimensional real-world data sets provide evidence for the effectiveness of our approach; it turns out that a reduction in complexity is even accompanied by an increase in predictive accuracy.
引用
收藏
页码:380 / 387
页数:8
相关论文
共 50 条
  • [41] Extended fuzzy regression models using regularization method
    Hong, DH
    Hwang, CH
    [J]. INFORMATION SCIENCES, 2004, 164 (1-4) : 31 - 46
  • [42] Development of fuzzy regression models using genetic algorithms
    Mogilenko, AV
    Pavlyuchenko, DA
    Manusov, VZ
    [J]. INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2003, 11 (04) : 429 - 444
  • [43] Suspended load estimation using L1-fuzzy regression, L2-fuzzy regression and MARS-fuzzy regression models
    Chachi, Jalal
    Taheri, Seyed Mahmoud
    Pazhand, Hojat Rezaee
    [J]. HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2016, 61 (08): : 1489 - 1502
  • [44] Evolving Fuzzy Models for Automated Translation
    Tenescu, Alina
    Precup, Radu-Emil
    Minculete, Nicusor
    [J]. ACTA POLYTECHNICA HUNGARICA, 2017, 14 (02) : 27 - 46
  • [45] Systematic Review of Forecasting Models Using Evolving Fuzzy Systems
    Vanegas-Ayala, Sebastian-Camilo
    Baron-Velandia, Julio
    Romero-Riano, Efren
    [J]. COMPUTATION, 2024, 12 (08)
  • [46] On-line clustering method for Takagi-Sugeno fuzzy models identification
    Martínez, Boris
    Herrera, Francisco
    Fernández, Jesús
    Marichal, Erick
    [J]. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 2008, 5 (03): : 63 - 69
  • [47] On-line clustering method for Takagi-Sugeno fuzzy models identification
    Martinez, Boris
    Herrera, Francisco
    Fernandez, Jesils
    Marichal, Erick
    [J]. REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2008, 5 (03): : 63 - +
  • [48] Creating comprehensible regression models - Inductive learning and optimization of fuzzy regression trees using comprehensible fuzzy predicates
    Drobics, Mario
    Himmelbauer, Johannes
    [J]. SOFT COMPUTING, 2007, 11 (05) : 421 - 438
  • [49] An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network
    Leng, G
    McGinnity, TM
    Prasad, G
    [J]. FUZZY SETS AND SYSTEMS, 2005, 150 (02) : 211 - 243
  • [50] Fuzzy regression analysis using fuzzy clustering
    Sato-Ilic, M
    [J]. 2002 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY PROCEEDINGS, 2002, : 57 - 62