A Dirichlet Process Prior for Estimating Lineage-Specific Substitution Rates

被引:59
|
作者
Heath, Tracy A. [1 ,2 ]
Holder, Mark T. [1 ]
Huelsenbeck, John P. [2 ]
机构
[1] Univ Kansas, Dept Ecol & Evolutionary Biol, Lawrence, KS 66045 USA
[2] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
divergence time estimation; relaxed clock; phylogenetics; Bayesian estimation; Markov chain Monte Carlo; Dirichlet process prior; mixed model; simulation; ESTIMATING DIVERGENCE TIMES; DNA-SEQUENCES; MOLECULAR CLOCK; LIKELIHOOD-ESTIMATION; BAYESIAN-ESTIMATION; EVOLUTIONARY TREES; SAMPLING METHODS; MIXTURE MODEL; INFERENCE; SELECTION;
D O I
10.1093/molbev/msr255
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We introduce a new model for relaxing the assumption of a strict molecular clock for use as a prior in Bayesian methods for divergence time estimation. Lineage-specific rates of substitution are modeled using a Dirichlet process prior (DPP), a type of stochastic process that assumes lineages of a phylogenetic tree are distributed into distinct rate classes. Under the Dirichlet process, the number of rate classes, assignment of branches to rate classes, and the rate value associated with each class are treated as random variables. The performance of this model was evaluated by conducting analyses on data sets simulated under a range of different models. We compared the Dirichlet process model with two alternative models for rate variation: the strict molecular clock and the independent rates model. Our results show that divergence time estimation under the DPP provides robust estimates of node ages and branch rates without significantly reducing power. Further analyses were conducted on a biological data set, and we provide examples of ways to summarize Markov chain Monte Carlo samples under this model.
引用
收藏
页码:939 / 955
页数:17
相关论文
共 50 条
  • [21] Lineage-specific proteins essential for endocytosis in trypanosomes
    Manna, Paul T.
    Obado, Samson O.
    Boehm, Cordula
    Gadelha, Catarina
    Sali, Andrej
    Chait, Brian T.
    Rout, Michael P.
    Field, Mark C.
    JOURNAL OF CELL SCIENCE, 2017, 130 (08) : 1379 - 1392
  • [22] Universal and lineage-specific trends in protein evolution
    Koonin, EV
    Jordan, IK
    Kondrashov, FA
    Adzhubei, IA
    Wolf, YI
    Kondrashov, AS
    Sunyaev, SR
    FEBS JOURNAL, 2005, 272 : 79 - 79
  • [23] The lineage-specific evolution of the oleosin family in Theaceae
    Zhang, Wei
    Xiong, Tao
    Ye, Fan
    Chen, Jia-Hui
    Chen, Yu-Rui
    Cao, Jia-Jia
    Feng, Zhi-Guo
    Zhang, Zai-Bao
    GENE, 2023, 868
  • [24] Lineage-specific evolution of mangrove plastid genomes
    Han, Kai
    Shi, Chengcheng
    Li, Liangwei
    Seim, Inge
    Lee, Simon Ming-Yuen
    Xu, Xun
    Yang, Huanming
    Fan, Guangyi
    Liu, Xin
    PLANT GENOME, 2020, 13 (02):
  • [25] Lineage-specific evolutionary rate in mammalian mtDNA
    Gissi, C
    Reyes, A
    Pesole, G
    Saccone, C
    MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (07) : 1022 - 1031
  • [26] Lineage-specific evolution of cnidarian Wnt ligands
    Hensel, Katrin
    Lotan, Tamar
    Sanders, Steve M.
    Cartwright, Paulyn
    Franka, Uri
    EVOLUTION & DEVELOPMENT, 2014, 16 (05) : 259 - 269
  • [27] Lentivirus as a tool for lineage-specific gene manipulations
    Malashicheva, Anna
    Kanzler, Benoit
    Tolkunova, Elena
    Trono, Didier
    Tomilin, Alexey
    GENESIS, 2007, 45 (07) : 456 - 459
  • [28] Universal and lineage-specific trends in protein evolution
    不详
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2005, 22 (06): : 867 - 867
  • [29] Lineage-specific transcription factors in unexpected places
    Munn, David H.
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2010, 40 (02) : 315 - 317
  • [30] New methods for detecting lineage-specific selection
    Siepel, Adam
    Pollard, Katherine S.
    Haussler, David
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, PROCEEDINGS, 2006, 3909 : 190 - 205