Ambivalent groups all of whose nonlinear characters are even

被引:1
|
作者
Armeanu, I
机构
[1] University of Bucharest Physics, Faculty Mathematics Dept., RO-76900 Bucharest-Magurele
关键词
D O I
10.1080/00927879708825857
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we shall determine the ambivalent groups all whose nonlinear irreducible characters have even degrees and the solvable ambivalent groups whith 6' the unique minimal subgroup. The notations and definitions will be those of [3] and [5]. All groups will be finite.
引用
收藏
页码:341 / 345
页数:5
相关论文
共 50 条
  • [31] Groups whose real irreducible characters have degrees coprime to p
    Isaacs, I. M.
    Navarro, Gabriel
    [J]. JOURNAL OF ALGEBRA, 2012, 356 (01) : 195 - 206
  • [32] Groups whose non-linear irreducible characters are rational valued
    M. R. Darafsheh
    A. Iranmanesh
    S. A. Moosavi
    [J]. Archiv der Mathematik, 2010, 94 : 411 - 418
  • [33] Groups whose non-linear irreducible characters are rational valued
    Darafsheh, M. R.
    Iranmanesh, A.
    Moosavi, S. A.
    [J]. ARCHIV DER MATHEMATIK, 2010, 94 (05) : 411 - 418
  • [34] Finite groups all of whose small subgroups are normal
    Berkovich, Yakov
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (06)
  • [35] Periodic Groups Whose All Involutions are Odd Transpositions
    E. Jabara
    A. Zakavi
    [J]. Siberian Mathematical Journal, 2019, 60 : 178 - 184
  • [36] On groups all of whose Haar graphs are Cayley graphs
    Feng, Yan-Quan
    Kovacs, Istvan
    Yang, Da-Wei
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2020, 52 (01) : 59 - 76
  • [37] TORSION-GROUPS ALL OF WHOSE SUBGROUPS ARE SUBNORMAL
    MOHRES, W
    [J]. GEOMETRIAE DEDICATA, 1989, 31 (02) : 237 - 244
  • [38] FINITE GROUPS ALL OF WHOSE SMALL SUBGROUPS ARE PRONORMAL
    Malinowska, I. A.
    [J]. ACTA MATHEMATICA HUNGARICA, 2015, 147 (02) : 324 - 337
  • [39] FINITE GROUPS ALL OF WHOSE PROPER CENTRALIZERS ARE CYCLIC
    Amiri, S. M. Jafarian
    Rostami, H.
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (03): : 755 - 762
  • [40] PERIODIC GROUPS WHOSE ALL INVOLUTIONS ARE ODD TRANSPOSITIONS
    Jabara, E.
    Zakavi, A.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2019, 60 (01) : 178 - 184