A simplified Fornberg-like method for the conformal mapping of multiply connected regions - Comparisons and crowding

被引:17
|
作者
Benchama, N. [2 ]
DeLillo, T. K. [1 ]
Hrycak, T. [3 ]
Wang, L. [4 ]
机构
[1] Wichita State Univ, Dept Math Sci, Dept Math & Stat, Wichita, KS 67260 USA
[2] Minnesota State Community & Tech Coll, Dept Math, Moorhead, MN 56560 USA
[3] Univ Vienna, Dept Math, Vienna, Austria
[4] Ft Hays State Univ, Dept Math & Comp Sci, Hays, KS 67601 USA
关键词
numerical conformal mapping; multiply connected regions; crowding; NUMERICAL-METHOD; ITERATIVE METHOD; FLOW;
D O I
10.1016/j.cam.2006.10.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new Fornberg-like method for the numerical conformal mapping of multiply connected regions exterior to circles to multiply connected regions exterior to smooth curves. The method is based on new, symmetric conditions for analytic extension of functions given on circular boundaries. We also briefly discuss a similar method due to Wegmann and compare some computations with both methods. Some examples of regions which exhibit crowding of the circles are also presented. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [31] Numerical conformal mapping and its inverse of unbounded multiply connected regions onto logarithmic spiral slit regions and straight slit regions
    Yunus, A. A. M.
    Murid, A. H. M.
    Nasser, M. M. S.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 470 (2162):
  • [32] COMPUTATION OF POTENTIAL FLOW IN MULTIPLY CONNECTED DOMAINS USING CONFORMAL MAPPING
    Delillo, T.
    Mears, J.
    Sahraei, S.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2023, 59 : 250 - 269
  • [33] CONFORMAL MAPPING OF CIRCULAR MULTIPLY CONNECTED DOMAINS ONTO SLIT DOMAINS
    Czapla, Roman
    Mityushev, Vladimir
    Rylko, Natalia
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2012, 39 : 286 - 297
  • [34] Conformal Mapping of Circular Multiply Connected Domains Onto Domains with Slits
    Czapla, Roman
    Mityushev, Vladimir V.
    NEW TRENDS IN ANALYSIS AND INTERDISCIPLINARY APPLICATIONS, 2017, : 19 - 25
  • [35] Green's functions for multiply connected domains via conformal mapping
    Embree, M
    Trefethen, LN
    SIAM REVIEW, 1999, 41 (04) : 745 - 761
  • [36] OSCULATION METHODS FOR THE CONFORMAL MAPPING OF DOUBLY CONNECTED REGIONS
    HOIDN, HP
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1982, 33 (05): : 640 - 652
  • [38] THE CONJUGATE FUNCTION METHOD AND CONFORMAL MAPPINGS IN MULTIPLY CONNECTED DOMAINS
    Hakula, Harri
    Quach, Tri
    Rasila, Antti
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (03): : A1753 - A1776
  • [39] An Integral Equation Method for Conformal Mapping of Doubly Connected Regions Involving the Neumann Kernel
    Murid, Ali Hassan Mohamed
    Hu, Laey-Nee
    Mohamad, Mohd Nor
    MATEMATIKA, 2008, 24 (02) : 99 - 111
  • [40] An extension of boundary element method for multiply connected regions
    Kadioglu, N
    Ataoglu, S
    BOUNDARY ELEMENTS XXI, 1999, 6 : 249 - 258