Simulation and kinetic modeling of supercritical water gasification of biomass

被引:34
|
作者
Tushar, Mohammad S. H. K. [1 ]
Dutta, Animesh [1 ]
Xu, Chunbao [2 ]
机构
[1] Univ Guelph, Sch Engn, Mech Engn Program, Guelph, ON N1G 2W1, Canada
[2] Univ Western Ontario, Dept Chem & Biochem Engn, London, ON N6A 5B9, Canada
关键词
Supercritical water gasification; Aspen Plus(R); Kinetic modeling; Langmuir-Helshinwood-Hougen-Watson (LHHW); Eley-Rideal (ER); Rate determining step (RDS); RETRO-ALDOL CONDENSATION; HYDROGEN-PRODUCTION; ETHYLENE-GLYCOL; HYDROTHERMAL LIQUEFACTION; 25; MPA; GLUCOSE; MECHANISM; CELLULOSE; DECOMPOSITION; HYDROLYSIS;
D O I
10.1016/j.ijhydene.2015.02.033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this article, kinetic study is performed to construe the kinetics of gasification of model biomass compounds in supercritical water (SCW) in the presence of catalyst for hydrogen production using the mechanistic models developed applying Langmuir-Helshinwood-Hougen-Watson (LHHW) and Eley-Rideal (ER) procedure. Besides, two types of model biomass are used to perform simulation of SCWG for producing H-2 using the Aspen Plus. Glucose is used for both kinetic study and simulation. As well, further simulation is performed using hydroxymethyle furfural and phenol mixture. A better justification is obtain between the simulation results and data from literature. Higher temperature shows better hydrogen yield whereas higher concentration of biomass shows decreased hydrogen production. None of the gasification efficiency, product yield and carbon conversion efficiency is significantly affected by pressure variation. It is found that gasification efficiency is higher than 100%, which means SCW actively takes part in the reaction as an important reactant. Higher temperature favor carbon conversion efficiency (CCE). With the increase in concentration, CCE increases for glucose. However, the mixture of phenol and hydroxymethyl furfural (HMF) showed a declining trend with an increase in biomass concentration. Among the proposed mechanistic models, three models converged. However, an ER based model described as the dissociation of adsorbed glucose through Retro-Aldol reaction is found to be the rate determining step with an average absolute deviation 10.6%. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:4481 / 4493
页数:13
相关论文
共 50 条
  • [31] Conversion of biomass into hydrogen by supercritical water gasification: a review
    Kapil Khandelwal
    Sonil Nanda
    Philip Boahene
    Ajay K. Dalai
    Environmental Chemistry Letters, 2023, 21 : 2619 - 2638
  • [32] Conversion of biomass into hydrogen by supercritical water gasification: a review
    Khandelwal, Kapil
    Nanda, Sonil
    Boahene, Philip
    Dalai, Ajay K.
    ENVIRONMENTAL CHEMISTRY LETTERS, 2023, 21 (05) : 2619 - 2638
  • [33] High-temperature biomass gasification in supercritical water
    Pinkowska, Hanna
    PRZEMYSL CHEMICZNY, 2007, 86 (11): : 1044 - 1050
  • [34] A novel salt separator for the supercritical water gasification of biomass
    Reimer, J.
    Peng, G.
    Viereck, S.
    De Boni, E.
    Breinl, J.
    Vogel, F.
    JOURNAL OF SUPERCRITICAL FLUIDS, 2016, 117 : 113 - 121
  • [35] Energetic analysis of gasification of aqueous biomass in supercritical water
    Marias, F.
    Letellier, S.
    Cezac, P.
    Serin, J. P.
    BIOMASS & BIOENERGY, 2011, 35 (01): : 59 - 73
  • [36] Supercritical water gasification of biomass model compounds: A review
    Hu, Yulin
    Gong, Mengyue
    Xing, Xuelian
    Wang, Haoyu
    Zeng, Yimin
    Xu, Chunbao Charles
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 118
  • [37] Supercritical water gasification of phenol as a model for plant biomass
    Gokkaya, Dilek Saul
    Saglam, Mehmet
    Yilksel, Mithat
    Ballice, Leuent
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (34) : 11133 - 11139
  • [38] Method of Hydrogen Production by Biomass Gasification in the Supercritical Water
    Peng, Kui
    Li, Hongxu
    RENEWABLE AND SUSTAINABLE ENERGY II, PTS 1-4, 2012, 512-515 : 1404 - 1408
  • [40] Kinetic Model for Supercritical Water Gasification of Typical Coals
    Ou, Guobiao
    Ren, Yifei
    Jin, Hui
    Guo, Liejin
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2022, 43 (08): : 2009 - 2018