Simulation and kinetic modeling of supercritical water gasification of biomass

被引:34
|
作者
Tushar, Mohammad S. H. K. [1 ]
Dutta, Animesh [1 ]
Xu, Chunbao [2 ]
机构
[1] Univ Guelph, Sch Engn, Mech Engn Program, Guelph, ON N1G 2W1, Canada
[2] Univ Western Ontario, Dept Chem & Biochem Engn, London, ON N6A 5B9, Canada
关键词
Supercritical water gasification; Aspen Plus(R); Kinetic modeling; Langmuir-Helshinwood-Hougen-Watson (LHHW); Eley-Rideal (ER); Rate determining step (RDS); RETRO-ALDOL CONDENSATION; HYDROGEN-PRODUCTION; ETHYLENE-GLYCOL; HYDROTHERMAL LIQUEFACTION; 25; MPA; GLUCOSE; MECHANISM; CELLULOSE; DECOMPOSITION; HYDROLYSIS;
D O I
10.1016/j.ijhydene.2015.02.033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this article, kinetic study is performed to construe the kinetics of gasification of model biomass compounds in supercritical water (SCW) in the presence of catalyst for hydrogen production using the mechanistic models developed applying Langmuir-Helshinwood-Hougen-Watson (LHHW) and Eley-Rideal (ER) procedure. Besides, two types of model biomass are used to perform simulation of SCWG for producing H-2 using the Aspen Plus. Glucose is used for both kinetic study and simulation. As well, further simulation is performed using hydroxymethyle furfural and phenol mixture. A better justification is obtain between the simulation results and data from literature. Higher temperature shows better hydrogen yield whereas higher concentration of biomass shows decreased hydrogen production. None of the gasification efficiency, product yield and carbon conversion efficiency is significantly affected by pressure variation. It is found that gasification efficiency is higher than 100%, which means SCW actively takes part in the reaction as an important reactant. Higher temperature favor carbon conversion efficiency (CCE). With the increase in concentration, CCE increases for glucose. However, the mixture of phenol and hydroxymethyl furfural (HMF) showed a declining trend with an increase in biomass concentration. Among the proposed mechanistic models, three models converged. However, an ER based model described as the dissociation of adsorbed glucose through Retro-Aldol reaction is found to be the rate determining step with an average absolute deviation 10.6%. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:4481 / 4493
页数:13
相关论文
共 50 条
  • [1] Biomass gasification in supercritical water
    Antal, MJ
    Allen, SG
    Schulman, D
    Xu, XD
    Divilio, RJ
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2000, 39 (11) : 4040 - 4053
  • [2] Biomass gasification in supercritical water
    Savage, Phillip E.
    Guan, Qingqing
    Huelsman, Chad
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [3] Reaction pathways and kinetic modeling for phenol gasification in supercritical water
    Huelsman, Chad M.
    Savage, Phillip E.
    JOURNAL OF SUPERCRITICAL FLUIDS, 2013, 81 : 200 - 209
  • [4] Supercritical Water Gasification of Biomass: A Detailed Process Modeling Analysis for a Microalgae Gasification Process
    Yakaboylu, Onursal
    Harinck, John
    Smit, K. G.
    de Jong, Wiebren
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (21) : 5550 - 5562
  • [5] Biomass Gasification in Supercritical Water - A Review
    Basu, Prabir
    Mettanant, Vichuda
    INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2009, 7
  • [6] Testing the constrained equilibrium method for the modeling of supercritical water gasification of biomass
    Yakaboylu, O.
    Harinck, J.
    Smit, K. G.
    de Jong, W.
    FUEL PROCESSING TECHNOLOGY, 2015, 138 : 74 - 85
  • [7] Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water
    Lu, Youjun
    Guo, Liejin
    Zhang, Ximin
    Yan, Qiuhui
    CHEMICAL ENGINEERING JOURNAL, 2007, 131 (1-3) : 233 - 244
  • [8] Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water
    Lu, Youjun
    Guo, Liejin
    Zhang, Ximin
    Yan, Qiuhui
    Chemical Engineering Journal, 2007, 131 (1-3): : 233 - 244
  • [9] Supercritical Water Gasification of Biomass: An Integrated Kinetic Model for the Prediction of Product Compounds
    Yakaboylu, Onursal
    Yapar, Guechan
    Recalde, Mayra
    Harinck, John
    Smit, K. G.
    Martelli, Emanuele
    de Jong, Wiebren
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (33) : 8100 - 8112
  • [10] Operating parametric analysis and kinetic modeling of methanol gasification in supercritical water
    Yang, Yuhang
    Zhao, Liang
    Zhang, Jun
    Huang, Runzhou
    JOURNAL OF SUPERCRITICAL FLUIDS, 2022, 180