On a (2+1)-dimensional generalization of the Ablowitz-Ladik lattice and a discrete Davey-Stewartson system

被引:6
|
作者
Tsuchida, Takayuki [1 ]
Dimakis, Aristophanes [2 ]
机构
[1] Okayama Inst Quantum Phys, Okayama 7000015, Japan
[2] Univ Aegean, Dept Financial & Management Engn, GR-82100 Chios, Greece
关键词
NONLINEAR-EVOLUTION-EQUATIONS; DIFFERENTIAL-DIFFERENCE EQUATIONS; SCHRODINGER-EQUATIONS; REPRESENTATION; SCATTERING; HIERARCHY;
D O I
10.1088/1751-8113/44/32/325206
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a natural (2 + 1)-dimensional generalization of the Ablowitz-Ladik lattice that is an integrable space discretization of the cubic nonlinear Schrodinger system in 1 + 1 dimensions. By further requiring rotational symmetry of order 2 in the two-dimensional lattice, we identify an appropriate change of dependent variables, which translates the (2 + 1)-dimensional Ablowitz-Ladik lattice into a suitable space discretization of the Davey-Stewartson system. The space-discrete Davey-Stewartson system has a Lax pair and allows the complex conjugation reduction between two dependent variables as in the continuous case. Moreover, it is ideally symmetric with respect to space reflections. Using the Hirota bilinear method, we construct some exact solutions such as multidromion solutions.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] The Ablowitz-Ladik lattice system by means of the extended (G′/G)-expansion method
    Aslan, Ismail
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (09) : 2778 - 2782
  • [42] Exact localized and periodic solutions of the Ablowitz-Ladik discrete nonlinear Schrodinger system
    Lai, XJ
    Zhang, JF
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2005, 60 (8-9): : 573 - 582
  • [43] DAVEY-STEWARTSON-I SYSTEM - A QUANTUM (2+1)-DIMENSIONAL INTEGRABLE SYSTEM
    SCHULTZ, CL
    ABLOWITZ, MJ
    BARYAACOV, D
    PHYSICAL REVIEW LETTERS, 1987, 59 (25) : 2825 - 2828
  • [44] Jacobi elliptic function solutions of the Ablowitz-Ladik discrete nonlinear Schrodinger system
    Huang, Wenhua
    Liu, Yulu
    CHAOS SOLITONS & FRACTALS, 2009, 40 (02) : 786 - 792
  • [45] Dark soliton collisions of a discrete Ablowitz-Ladik equation for an electrical/optical system
    Xie, Xi-Yang
    Tian, Bo
    Wu, Xiao-Yu
    Jiang, Yan
    OPTICAL ENGINEERING, 2016, 55 (10)
  • [47] Semi-rational solutions for a <alternatives>(2+1)-dimensional Davey-Stewartson system on the surface water waves of finite depth
    Sun, Yan
    Tian, Bo
    Yuan, Yu-Qiang
    Du, Zhong
    NONLINEAR DYNAMICS, 2018, 94 (04) : 3029 - 3040
  • [48] 用G'/G-展开法求解(2+1)维Ablowitz-Ladik方程
    李四伟
    张金良
    河南科技大学学报(自然科学版), 2011, (02) : 72 - 74
  • [49] Rogue-wave solutions for a discrete Ablowitz-Ladik equation with variable coefficients for an electrical lattice
    Wu, Xiao-Yu
    Tian, Bo
    Yin, Hui-Min
    Du, Zhong
    NONLINEAR DYNAMICS, 2018, 93 (03) : 1635 - 1645
  • [50] Exact propagating dromion-like localized wave solutions of generalized (2+1)-dimensional Davey-Stewartson equations
    Kavitha, L.
    Srividya, B.
    Gopi, D.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (12) : 4691 - 4707