On a (2+1)-dimensional generalization of the Ablowitz-Ladik lattice and a discrete Davey-Stewartson system

被引:6
|
作者
Tsuchida, Takayuki [1 ]
Dimakis, Aristophanes [2 ]
机构
[1] Okayama Inst Quantum Phys, Okayama 7000015, Japan
[2] Univ Aegean, Dept Financial & Management Engn, GR-82100 Chios, Greece
关键词
NONLINEAR-EVOLUTION-EQUATIONS; DIFFERENTIAL-DIFFERENCE EQUATIONS; SCHRODINGER-EQUATIONS; REPRESENTATION; SCATTERING; HIERARCHY;
D O I
10.1088/1751-8113/44/32/325206
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a natural (2 + 1)-dimensional generalization of the Ablowitz-Ladik lattice that is an integrable space discretization of the cubic nonlinear Schrodinger system in 1 + 1 dimensions. By further requiring rotational symmetry of order 2 in the two-dimensional lattice, we identify an appropriate change of dependent variables, which translates the (2 + 1)-dimensional Ablowitz-Ladik lattice into a suitable space discretization of the Davey-Stewartson system. The space-discrete Davey-Stewartson system has a Lax pair and allows the complex conjugation reduction between two dependent variables as in the continuous case. Moreover, it is ideally symmetric with respect to space reflections. Using the Hirota bilinear method, we construct some exact solutions such as multidromion solutions.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] The Davey-Stewartson equation and the Ablowitz-Ladik hierarchy
    Vekslerchik, VE
    [J]. INVERSE PROBLEMS, 1996, 12 (06) : 1057 - 1074
  • [2] A new generalization of the (2+1)-dimensional Davey-Stewartson equation
    Lin, J
    Tang, XY
    Lou, SY
    Wang, KL
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2001, 56 (9-10): : 613 - 618
  • [3] (2+1) dimensional wave patterns of the Davey-Stewartson system
    Chow, KW
    Mak, CC
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 (12) : 3070 - 3074
  • [4] On the two-component generalization of the (2+1)-dimensional Davey-Stewartson I equation
    Serikbayev, Nurzhan
    Nugmanova, Gulgassyl
    Myrzakulov, Ratbay
    [J]. 8TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCE, 2019, 1391
  • [5] On a discrete Davey-Stewartson system
    Gegenhasi
    Hu, Xing-Biao
    Levi, Decio
    [J]. INVERSE PROBLEMS, 2006, 22 (05) : 1677 - 1688
  • [6] (2+1)-dimensional Davey-Stewartson I description in a 2D lattice model
    Li, Zhi-fang
    Ruan, Hang-yu
    [J]. PHYSICA SCRIPTA, 2008, 77 (06)
  • [7] Interaction dynamics of nonautonomous bright and dark solitons of the discrete (2+1)-dimensional Ablowitz-Ladik equation
    Li, Li
    Yu, Fajun
    [J]. NONLINEAR DYNAMICS, 2021, 106 (01) : 855 - 865
  • [8] (2+1)-dimensional Davey-Stewartson II equation for a two-dimensional nonlinear monatomic lattice
    Li, ZF
    Ruan, HY
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2006, 61 (1-2): : 45 - 52
  • [9] ON (2+1)-DIMENSIONAL EXPANDING INTEGRABLE MODEL OF THE DAVEY-STEWARTSON HIERARCHY
    Guo, Xiu-Rong
    Ma, Fang-Fang
    Wang, Juan
    [J]. THERMAL SCIENCE, 2021, 25 (06): : 4431 - 4439
  • [10] On the Solitary Wave Solutions to the (2+1)-Dimensional Davey-Stewartson Equations
    Ismael, Hajar F.
    Bulut, Hasan
    [J]. 4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL MATHEMATICS AND ENGINEERING SCIENCES (CMES-2019), 2020, 1111 : 156 - 165