A gradient estimate for the Ricci-Kahler flow

被引:4
|
作者
Chow, B [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
gradient estimate; Ricci flow; Ricci-Kahler flow;
D O I
10.1023/A:1010788103481
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for a complete solution to the Ricci-Kahler flow where the curvature, the potential and scalar curvature functions and their gradients are bounded depending on time, the absolute value of both the scalar curvature and the gradient squared of a modified potential function are bounded by C/t.
引用
收藏
页码:321 / 325
页数:5
相关论文
共 50 条
  • [41] On the Kahler-Ricci flow on complex surfaces
    Phong, D. H.
    Sturm, Jacob
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2005, 1 (02) : 405 - 413
  • [42] Kahler-Ricci Flow and Conformal Submersion
    Hoan, Nguyen The
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (05)
  • [43] The Kahler Ricci flow on Fano manifolds (I)
    Chen, Xiuxiong
    Wang, Bing
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2012, 14 (06) : 2001 - 2038
  • [44] CANONICAL MEASURES AND KAHLER-RICCI FLOW
    Song, Jian
    Tian, Gang
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 25 (02) : 303 - 353
  • [45] ON HARNACK INEQUALITIES FOR THE KAHLER-RICCI FLOW
    CAO, HD
    INVENTIONES MATHEMATICAE, 1992, 109 (02) : 247 - 263
  • [46] On the Kahler-Ricci flow on Fano manifolds
    Guo, Bin
    Phong, Duong H.
    Sturm, Jacob
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (02) : 573 - 581
  • [47] On the Kahler-Ricci flow near a Kahler-Einstein metric
    Sun, Song
    Wang, Yuanqi
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 699 : 143 - 158
  • [48] KAHLER- RICCI FLOW WITH UNBOUNDED CURVATURE
    Huang, Shaochuang
    Tam, Luen-Fai
    AMERICAN JOURNAL OF MATHEMATICS, 2018, 140 (01) : 189 - 220
  • [49] On a twisted conical Kahler-Ricci flow
    Zhang, Yashan
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2019, 55 (01) : 69 - 98
  • [50] The Kahler-Ricci Flow on Fano Manifolds
    Cao, Huai-Dong
    INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : 239 - 297