Operation of a Diamond Cryogenic Detector for Low-Mass Dark Matter Searches

被引:7
|
作者
Canonica, L. [1 ]
Abdelhameed, A. H. [1 ]
Bauer, P. [1 ]
Bento, A. [1 ,2 ]
Bertoldo, E. [1 ]
Ferreiro Iachellini, N. [1 ]
Fuchs, D. [1 ]
Hauff, D. [1 ]
Mancuso, M. [1 ]
Petricca, F. [1 ]
Proebst, F. [1 ]
Rothe, J. [1 ]
机构
[1] Max Planck Inst Phys & Astrophys, Fohringer Ring 6, D-80805 Munich, Germany
[2] Univ Coimbra, Dept Fis, P-3004516 Coimbra, Portugal
关键词
CVD diamond; Dark matter; Cryogenic detector; TES;
D O I
10.1007/s10909-020-02350-4
中图分类号
O59 [应用物理学];
学科分类号
摘要
Despite the multiple and convincing evidence of the existence of dark matter (DM) in our Universe, its detection is one of the most pressing questions in particle physics. As of today, there is no unambiguous hint which could clarify the particle nature of DM. For these reasons, a huge experimental effort is ongoing, trying to realize experiments which can probe the particle properties of DM. In particular, direct search experiments are trying to cover the largest possible mass range, from a few MeVs up to TeVs. Particularly suited for the sub-GeV mass region are detectors containing light nuclei, which are sensitive to the scattering of light DM candidates. Among them, we investigate a carbon-based absorber to explore DM masses down to the MeV region. Thanks to their cryogenic properties (high Debye temperature and long-lived phonon modes), carbon-based materials operated as low temperature calorimeters could reach an energy threshold in the eV range and would allow for the exploration of new parameters of the DM-nucleus cross section. Despite several proposals, the possibility of operating a carbon-based cryogenic detector is yet to be demonstrated. In this contribution, the preliminary results obtained with a diamond absorber operated with a TES temperature sensor will be reported. The potential of such a detector in the current landscape of DM searches will also be illustrated.
引用
收藏
页码:606 / 613
页数:8
相关论文
共 50 条
  • [31] First Measurement of Discrimination between Helium and Electron Recoils in Liquid Xenon for Low-Mass Dark Matter Searches
    Haselschwardt, S. J.
    Gibbons, R.
    Chen, H.
    Kravitz, S.
    Manalaysay, A.
    Xia, Q.
    Lippincott, W. H.
    Sorensen, P.
    PHYSICAL REVIEW LETTERS, 2024, 132 (11)
  • [32] Low-Noise HEMTs for Coherent Elastic Neutrino Scattering and Low-Mass Dark Matter Cryogenic Semiconductor Detectors
    A. Juillard
    J. Billard
    D. Chaize
    J-B Filippini
    D. Misiak
    L. Vagneron
    A. Cavanna
    Q. Dong
    Y. Jin
    C. Ulysse
    A. Bounab
    X. de la Broise
    C. Nones
    A. Phipps
    Journal of Low Temperature Physics, 2020, 199 : 798 - 806
  • [33] Low-Noise HEMTs for Coherent Elastic Neutrino Scattering and Low-Mass Dark Matter Cryogenic Semiconductor Detectors
    Juillard, A.
    Billard, J.
    Chaize, D.
    Filippini, J-B
    Misiak, D.
    Vagneron, L.
    Cavanna, A.
    Dong, Q.
    Jin, Y.
    Ulysse, C.
    Bounab, A.
    de la Broise, X.
    Nones, C.
    Phipps, A.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 199 (3-4) : 798 - 806
  • [34] GeV dark matter searches with the NEWS detector
    Profumo, Stefano
    PHYSICAL REVIEW D, 2016, 93 (05)
  • [35] Combination of the searches for the low-mass Standard Model Higgs boson with ATLAS detector
    Gabrielli, A.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2014, 37 (01): : 291 - 292
  • [36] Non-cryogenic WIMP dark matter searches
    Spooner, NJC
    COSMO-97: FIRST INTERNATIONAL WORKSHOP ON PARTICLE PHYSICS AND THE EARLY UNIVERSE, 1998, : 155 - 171
  • [37] EURECA -- the European future of cryogenic dark matter searches
    Kraus, H.
    Bauer, M.
    Benoit, A.
    Bluemer, J.
    Broniatowski, A.
    Camus, P.
    Chantelauze, A.
    Chapellier, M.
    Chardin, G.
    Christ, P.
    Coppi, C.
    De Jesus, M.
    De Lesquen, A.
    Deschamps, H.
    Di Stefano, P.
    Dumoulin, L.
    Eitel, K.
    von Feilitzsch, F.
    Fesquet, M.
    Gascon, J.
    Gerbier, G.
    Goldbach, C.
    Gros, M.
    Hauff, D.
    Henry, S.
    Horn, M.
    Isaila, C.
    Kimmerle, M.
    Jochum, J.
    Juillard, A.
    Lemrani, R.
    Luca, M.
    Marnieros, S.
    McGowan, R.
    Mikhailik, V.
    Navick, X-F
    Niinikoski, T.
    Nollez, G.
    Pantic, E.
    Pari, P.
    Petricca, F.
    Potzel, W.
    Proebst, F.
    Rau, W.
    Ritter, F.
    Rottler, K.
    Scholl, S.
    Seidel, W.
    Sanglard, V.
    Stern, M.
    TAUP 2005: PROCEEDINGS OF THE NINTH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS, 2006, 39 : 139 - +
  • [38] Tools for studying low-mass dark matter at neutrino detectors
    Kumar, Jason
    Learned, John G.
    Smith, Stefanie
    Richardson, Katherine
    PHYSICAL REVIEW D, 2012, 86 (07):
  • [39] Searches for low-mass dimuon resonances
    Aaij, R.
    Beteta, C. Abellan
    Ackernley, T.
    Adeva, B.
    Adinolfi, M.
    Afsharnia, H.
    Aidala, C. A.
    Aiola, S.
    Ajaltouni, Z.
    Akar, S.
    Albrecht, J.
    Alessio, F.
    Alexander, M.
    Alfonso Albero, A.
    Aliouche, Z.
    Alkhazov, G.
    Cartelle, P. Alvarez
    Alves, A. A., Jr.
    Amato, S.
    Amhis, Y.
    An, L.
    Anderlini, L.
    Andreassi, G.
    Andreianov, A.
    Andreotti, M.
    Archilli, F.
    Artamonov, A.
    Artuso, M.
    Arzymatov, K.
    Aslanides, E.
    Atzeni, M.
    Audurier, B.
    Bachmann, S.
    Bachmayer, M.
    Back, J. J.
    Baker, S.
    Rodriguez, P. Baladron
    Balagura, V
    Baldini, W.
    Baptista Leite, J.
    Barlow, R. J.
    Barsuk, S.
    Barter, W.
    Bartolini, M.
    Baryshnikov, F.
    Basels, J. M.
    Bassi, G.
    Batozskaya, V
    Batsukh, B.
    Battig, A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (10)
  • [40] On the Existence of Low-Mass Dark Matter and its Direct Detection
    Bateman, James
    McHardy, Ian
    Merle, Alexander
    Morris, Tim R.
    Ulbricht, Hendrik
    SCIENTIFIC REPORTS, 2015, 5 : 8058