Medical image fusion with convolutional neural network in multiscale transform domain

被引:1
|
作者
Abas, Asan Ihsan [1 ]
Kocer, Hasan Erdinc [2 ]
Baykan, Nurdan Akhan [1 ]
机构
[1] Konya Tech Univ, Engn Fac, Dept Comp Engn, Konya, Turkey
[2] Selcuk Univ, Technol Fac, Dept Elect & Elect Engn, Konya, Turkey
关键词
Medical image fusion; convolutional neural networks; multiscale transform; DISCRETE WAVELET TRANSFORM; AVERAGING FUSION; PERFORMANCE;
D O I
10.3906/elk-2105-170
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multimodal medical image fusion approaches have been commonly used to diagnose diseases and involve merging multiple images of different modes to achieve superior image quality and to reduce uncertainty and redundancy in order to increase the clinical applicability. In this paper, we proposed a new medical image fusion algorithm based on a convolutional neural network (CNN) to obtain a weight map for multiscale transform (curvelet/ non-subsampled shearlet transform) domains that enhance the textual and edge property. The aim of the method is achieving the best visualization and highest details in a single fused image without losing spectral and anatomical details. In the proposed method, firstly, non-subsampled shearlet transform (NSST) and curvelet transform (CvT) were used to decompose the source image into low-frequency and high-frequency coefficients. Secondly, the low-frequency and high-frequency coefficients were fused by the weight map generated by Siamese Convolutional Neural Network (SCNN), where the weight map get by a series of feature maps and fuses the pixel activity information from different sources. Finally, the fused image was reconstructed by inverse multi-scale transform (MST). For testing of proposed method, standard gray-scaled magnetic resonance (MR) images and colored positron emission tomography (PET) images taken from Brain Atlas Datasets were used. The proposed method can effectively preserve the detailed structure information and performs well in terms of both visual quality and objective assessment. The fusion experimental results were evaluated (according to quality metrics) with quantitative and qualitative criteria.
引用
收藏
页码:2780 / +
页数:17
相关论文
共 50 条
  • [11] Multifocus image fusion using multiscale transform and convolutional sparse representation
    Zhang, Chengfang
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2021, 19 (01)
  • [12] A novel improved deep convolutional neural network model for medical image fusion
    Xia, Kai-jian
    Yin, Hong-sheng
    Wang, Jiang-qiang
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 1): : 1515 - 1527
  • [13] A novel improved deep convolutional neural network model for medical image fusion
    Kai-jian Xia
    Hong-sheng Yin
    Jiang-qiang Wang
    Cluster Computing, 2019, 22 : 1515 - 1527
  • [14] A Multiscale Fusion Convolutional Neural Network for Plant Leaf Recognition
    Hu, Jing
    Chen, Zhibo
    Yang, Meng
    Zhang, Rongguo
    Cui, Yaji
    IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (06) : 853 - 857
  • [15] DCFNet: Infrared and Visible Image Fusion Network Based on Discrete Wavelet Transform and Convolutional Neural Network
    Wu, Dan
    Wang, Yanzhi
    Wang, Haoran
    Wang, Fei
    Gao, Guowang
    SENSORS, 2024, 24 (13)
  • [16] Medical image fusion based on convolutional neural networks and non-subsampled contourlet transform
    Wang, Zeyu
    Li, Xiongfei
    Duan, Haoran
    Su, Yanchi
    Zhang, Xiaoli
    Guan, Xinjiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 171
  • [17] A multibranch and multiscale neural network based on semantic perception for multimodal medical image fusion
    Lin, Cong
    Chen, Yinjie
    Feng, Siling
    Huang, Mengxing
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [18] Medical Image Classification with Convolutional Neural Network
    Li, Qing
    Cai, Weidong
    Wang, Xiaogang
    Zhou, Yun
    Feng, David Dagan
    Chen, Mei
    2014 13TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION (ICARCV), 2014, : 844 - 848
  • [19] Research on Multimodal Medical Image Fusion Method Based on Fully Convolutional Neural Network
    Guo, Pengwei
    Yu, Shun
    ASIA-PACIFIC JOURNAL OF CLINICAL ONCOLOGY, 2023, 19 : 20 - 20
  • [20] Multimodal medical image fusion using convolutional neural network and extreme learning machine
    Kong, Weiwei
    Li, Chi
    Lei, Yang
    FRONTIERS IN NEUROROBOTICS, 2022, 16