A sigmoidal equation for the high strain rate compression of porous metals

被引:3
|
作者
Ruestes, Carlos J. [1 ,2 ]
Bertolino, Graciela M. [3 ]
Ruda, Margarita [4 ]
Bringa, Eduardo M. [5 ,6 ]
机构
[1] Univ Nacl Cuyo, CONICET, RA-5500 Mendoza, Argentina
[2] Univ Nacl Cuyo, Fac Ciencias Exactas & Nat, RA-5500 Mendoza, Argentina
[3] Consejo Nacl Invest Cient & Tecn, CAB Inst Balseiro, Div Fis Metales, San Carlos De Bariloche, Rio Negro, Argentina
[4] CNEA CAB Dept Fisicoquim Mat, San Carlos De Bariloche, Rio Negro, Argentina
[5] Univ Mendoza, CONICET, RA-5500 Mendoza, Argentina
[6] Univ Mendoza, Fac Ingn, RA-5500 Mendoza, Argentina
关键词
Porosity; Compaction; Compression; Foams; DYNAMIC PORE-COLLAPSE; PLASTIC-DEFORMATION; VOID GROWTH; ATOMISTIC SIMULATION; MECHANICAL RESPONSE; IMPLEMENTATION; STRENGTH; TANTALUM; IMPACTS;
D O I
10.1016/j.ijimpeng.2019.103431
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The high strain rate compression of porous materials is a problem that presents a series of difficulties to continuum-scale codes, its computational cost being a major one. Following previous contributions suggesting that compaction can be defined in terms of volumetric strain, we propose to model the compaction of porous metals by means of a sigmoidal equation. The definition requires only four parameters, each of them with a physical meaning. We tested the proposed equation against molecular dynamics simulations of high strain rate compression of closed-cell and open-cell foams, as well as micro-scale data available in the literature. The equation can be used in micro and macro-scale codes where nano-scale porosity cannot be modeled explicitly.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Shock compression of nanoporous silicon carbide at high strain rate
    Chen, Zhuochen
    Zhang, Xiaoqing
    Li, Wanghui
    Yao, Xiaohu
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 224
  • [32] Adiabatic shearband in WHA in high-strain-rate compression
    Kim, DS
    Nemat-Nasser, S
    Isaacs, JB
    Lischer, D
    MECHANICS OF MATERIALS, 1998, 28 (1-4) : 227 - 236
  • [33] Shock compression of porous metals and silicates
    Medvedev, A. B.
    Trunin, R. F.
    PHYSICS-USPEKHI, 2012, 55 (08) : 773 - 789
  • [34] Damage in metals caused by high-strain-rate loading
    Svejcar, J
    Krejcí, J
    Buchar, J
    Brezina, J
    KOVOVE MATERIALY-METALLIC MATERIALS, 1999, 37 (05): : 349 - 356
  • [35] A CONSTITUTIVE MODEL FOR METALS APPLICABLE AT HIGH-STRAIN RATE
    STEINBERG, DJ
    COCHRAN, SG
    GUINAN, MW
    JOURNAL OF APPLIED PHYSICS, 1980, 51 (03) : 1498 - 1504
  • [36] High strain rate compression and tension response of high hard tool steel
    Brar, M.S.
    Simha, C. Hari Manoj
    Journal De Physique. IV : JP, 2000, 10 (09): : 611 - 615
  • [37] High strain rate compression and tension response of high hard tool steel
    Brar, NS
    Simha, CHM
    JOURNAL DE PHYSIQUE IV, 2000, 10 (P9): : 611 - 615
  • [38] High strain rate compression and tension characterization of high strength (automotive) sheetsteels
    Syed, IH
    Brar, NS
    SHOCK COMPRESSION OF CONDENSED MATTER - 2003, PTS 1 AND 2, PROCEEDINGS, 2004, 706 : 613 - 616
  • [39] EVOLUTION OF VOIDS IN DUCTILE POROUS MATERIALS AT HIGH STRAIN RATE
    Zheng Jian (Laboratory for Non-linear Mechanics of Continuous Media
    Acta Mechanica Solida Sinica, 1994, (03) : 191 - 202
  • [40] A yield criterion for porous ductile media at high strain rate
    Wang, Ze-Ping
    Jiang, Qing
    Journal of Applied Mechanics, Transactions ASME, 1997, 64 (03): : 503 - 509