A new preconditioned SOR method for solving multi-linear systems with an M-tensor

被引:0
|
作者
Liu, Dongdong [1 ]
Li, Wen [2 ]
Vong, Seak-Weng [3 ]
机构
[1] Guangdong Univ Technol, Sch Appl Math, Guangzhou, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou, Peoples R China
[3] Univ Macau, Dept Math, Macau, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-linear system; SOR method; Preconditioned method; Tensor splitting algorithm; Stong M-tensor; QUADRATICALLY CONVERGENT ALGORITHM;
D O I
10.1007/s10092-020-00364-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a new preconditioned SOR method for solving the multi-linear systems whose coefficient tensor is an M-tensor. The corresponding comparison for spectral radii of iterative tensors is given. Numerical examples demonstrate the efficiency of the proposed preconditioned methods.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] The tensor splitting with application to solve multi-linear systems
    Liu, Dongdong
    Li, Wen
    Vong, Seak-Weng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 330 : 75 - 94
  • [22] Improving the Gauss-Seidel iterative method for solving multi-linear systems with M-tensors
    Nobakht-Kooshkghazi, Malihe
    Najafi-Kalyani, Mehdi
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2024, 41 (02) : 1061 - 1077
  • [23] Preconditioned iterative methods for multi-linear systems based on the majorization matrix
    Beik, Fatemeh Panjeh Ali
    Najafi-Kalyani, Mehdi
    Jbilou, Khalide
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (20): : 5827 - 5846
  • [24] A new SOR-type iteration method for solving linear systems
    Liu, Kai
    Yang, Jie
    Shi, Wei
    APPLIED MATHEMATICS LETTERS, 2020, 102
  • [25] A new preconditioned SOR method for solving multi-linear systems with an M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document}-tensor
    Dongdong Liu
    Wen Li
    Seak-Weng Vong
    Calcolo, 2020, 57 (2)
  • [26] A sufficient descent nonlinear conjugate gradient method for solving M-tensor equations
    Liu, Jiankun
    Du, Shouqiang
    Chen, Yuanyuan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 371
  • [27] Neural networks based approach solving multi-linear systems with M-tensors
    Wang, Xuezhong
    Che, Maolin
    Wei, Yimin
    NEUROCOMPUTING, 2019, 351 (33-42) : 33 - 42
  • [28] An Effective Tensor Completion Method Based on Multi-linear Tensor Ring Decomposition
    Yu, Jinshi
    Zhou, Guoxu
    Zhao, Qibin
    Xie, Kan
    2018 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2018, : 1344 - 1349
  • [29] On performance of SOR method for solving nonsymmetric linear systems
    Woznicki, ZI
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 137 (01) : 145 - 176
  • [30] Newton’s Method for M-Tensor Equations
    Dong-Hui Li
    Jie-Feng Xu
    Hong-Bo Guan
    Journal of Optimization Theory and Applications, 2021, 190 : 628 - 649