This review discusses the influence of three key factors on agglomeration of chemical looping technology from the aspects of reaction conditions, the oxygen carrier and biomass composition. In addition, the existing agglomeration mechanisms are extended, and the technologies of detection and prevention of the agglomeration is reviewed. In the process of chemical looping reaction, high reaction temperature, the oxygen carrier materials with poor anti-sintering ability and the reaction system containing more alkali metals and silicon-based materials will easily cause agglomeration. Previous literatures have summarized the agglomeration produced by two mechanisms, and both of them pointed out that the alkali metal in the biomass ash is the main component to induce the agglomeration. For the SiO2-based oxygen carrier material, it is speculated that the alkali metal will react with the support to inactivate the active metal component through the inclusion of the molten material. However, the oxygen carrier without SiO2-based material is mainly produced through the mechanism of meltinduced, but not the coating-induced agglomeration. The predication of agglomeration focuses on the biomass ash test before the reaction and the monitoring of some variables during the reaction process, such as temperature and pressure analysis. Moreover, the agglomeration can be prevented or controlled by condition adjustment, reactor design, oxygen carrier design and biomass pretreatment. In addition, the use of additives is also a reliable method to reduce the agglomeration.