WEAKLY NONLOCAL BOUNDARY VALUE PROBLEMS WITH APPLICATION TO GEOLOGY

被引:1
|
作者
Maroncelli, Daniel [1 ]
Collins, Emma [2 ]
机构
[1] Coll Charleston, Dept Math, Charleston, SC 29424 USA
[2] Robinson Design Engineers, 10 Daniel St, Charleston, SC 29407 USA
来源
DIFFERENTIAL EQUATIONS & APPLICATIONS | 2021年 / 13卷 / 02期
关键词
Geology; eigenvalue; nonlocal; implicit function theorem; Sturm-Liouville; STURM-LIOUVILLE PROBLEMS; DISCRETE;
D O I
10.7153/dea-2021-13-12
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In many cases, groundwater flow in an unconfined aquifer can be simplified to a onedimensional Sturm-Liouville model of the form: x '' (t) + lambda x(t) = h(t) + epsilon f (x(t)), t is an element of (0, pi) subject to non-local boundary conditions x(0) = h(1) + epsilon eta(1)( x) and x(pi) = h(2) + epsilon eta(2)(x). In this paper, we study the existence of solutions to the above Sturm-Liouville problem under the assumption that epsilon is a small parameter. Our method will be analytical, utilizing the implicit function theorem and its generalizations.
引用
收藏
页码:211 / 225
页数:15
相关论文
共 50 条