Characteristics of Question of Blind Source Separation Using Moore-Penrose Pseudoinversion for Reconstruction of EEG Signal

被引:22
|
作者
Paszkiel, Szczepan [1 ]
机构
[1] Opole Univ Technol, Inst Control & Comp Engn, Fac Elect Engn Automat Control & Informat, Prszkowska 76, PL-45271 Opole, Poland
关键词
Moore-Penrose pseudoinversion; EEG signal; Blind signal separation; LOCALIZATION; ARTIFACTS; REMOVAL;
D O I
10.1007/978-3-319-54042-9_36
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper presents question of blind source separation encountered by researchers aiming to determine location of generation electric activity in human brain as a source signal characteristic for given neuron fraction. To that end, Blind Signal Separation (BSS) technique with Moore-Penrose pseudoinversion was presented. The technique is useful for reconstruction of EEG signal. For the experimental purpose, sLORETA algorithm was also used to identify sources as a part of the inverse problem.
引用
收藏
页码:393 / 400
页数:8
相关论文
共 50 条
  • [21] A new method for quantifying the performance of EEG blind source separation algorithms by referencing a simultaneously recorded ECoG signal
    Oosugi, Naoya
    Kitajo, Keiichi
    Hasegawa, Naomi
    Nagasaka, Yasuo
    Okanoya, Kazuo
    Fujii, Naotaka
    NEURAL NETWORKS, 2017, 93 : 1 - 6
  • [22] Removing Noise and Artifacts from EEG Using Adaptive Noise Cancelator and Blind Source Separation
    Cuong, Nguyen T. K.
    Ha, Vo Q.
    Huong, Nguyen T. M.
    Truong Quang Dang Khoa
    Nguyen Huynh Minh Tam
    Linh, Huynh Q.
    Vo Van Toi
    THIRD INTERNATIONAL CONFERENCE ON THE DEVELOPMENT OF BIOMEDICAL ENGINEERING IN VIETNAM, 2010, 27 : 282 - +
  • [23] Removal of Transcranial Alternating Current Stimulation EEG Artifacts Using Blind Source Separation and Wavelets
    Yan, Xuanteng
    Boudrias, Marie-Helene
    Mitsis, Georgios D.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2022, 69 (10) : 3183 - 3192
  • [24] Electrical signal measurement in plants using blind source separation with independent component analysis
    Huang, Lan
    Wang, Zhong-Yi
    Zhao, Long-Lian
    Zhao, Dong-Jie
    Wang, Cheng
    Xu, Zhi-Long
    Hou, Rui-Feng
    Qiao, Xiao-Jun
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2010, 71 : S54 - S59
  • [26] Extraction of FECG Signal Based on Blind Source Separation Using Principal Component Analysis
    Dembrani, Mahesh B.
    Khanchandani, K. B.
    Zurani, Anita
    PROGRESS IN INTELLIGENT COMPUTING TECHNIQUES: THEORY, PRACTICE, AND APPLICATIONS, VOL 1, 2018, 518 : 173 - 180
  • [27] Blind source-separation in mixed-signal VLSI using the InfoMax algorithm
    Valenzuela, Waldo
    Carvajal, Gonzalo
    Figueroa, Miguel
    ARTIFICIAL NEURAL NETWORKS - ICANN 2008, PT II, 2008, 5164 : 208 - 217
  • [28] New method for signal encryption using blind source separation based on subband decomposition
    Yang, Zuyuan
    Zhou, Guoxu
    Wu, Zongze
    Zhang, Jinlong
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2008, 18 (06) : 751 - 755
  • [29] Pulse-Compression Radar Signal Sorting Using the Blind Source Separation Algrithms
    Jiang, Li
    Jiang, Li
    Li, Lin
    Zhao, Guo-qing
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON ESTIMATION, DETECTION AND INFORMATION FUSION ICEDIF 2015, 2015, : 268 - 271
  • [30] Adaptive blind source separation using constant modulus criterion and signal mutual information
    Xiang, Yong
    Gu, Nong
    Wong, Khoi L.
    2005 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY - (ICIT), VOLS 1 AND 2, 2005, : 1435 - 1439