Characteristics of Question of Blind Source Separation Using Moore-Penrose Pseudoinversion for Reconstruction of EEG Signal

被引:22
|
作者
Paszkiel, Szczepan [1 ]
机构
[1] Opole Univ Technol, Inst Control & Comp Engn, Fac Elect Engn Automat Control & Informat, Prszkowska 76, PL-45271 Opole, Poland
关键词
Moore-Penrose pseudoinversion; EEG signal; Blind signal separation; LOCALIZATION; ARTIFACTS; REMOVAL;
D O I
10.1007/978-3-319-54042-9_36
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper presents question of blind source separation encountered by researchers aiming to determine location of generation electric activity in human brain as a source signal characteristic for given neuron fraction. To that end, Blind Signal Separation (BSS) technique with Moore-Penrose pseudoinversion was presented. The technique is useful for reconstruction of EEG signal. For the experimental purpose, sLORETA algorithm was also used to identify sources as a part of the inverse problem.
引用
收藏
页码:393 / 400
页数:8
相关论文
共 50 条
  • [1] EEG brain map reconstruction using blind source separation
    Sanei, S
    Leyman, AR
    2001 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING PROCEEDINGS, 2001, : 233 - 236
  • [2] Detection of paroxysmal EEG discharges using multitaper blind signal source separation
    Halford, Jonathan J.
    Independent Component Analysis and Signal Separation, Proceedings, 2007, 4666 : 601 - 608
  • [3] Blind source separation of EEG data using matched filters
    Köhler, BU
    Orglmeister, R
    Brehmeier-Flick, B
    PROCEEDINGS OF THE 20TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 20, PTS 1-6: BIOMEDICAL ENGINEERING TOWARDS THE YEAR 2000 AND BEYOND, 1998, 20 : 2038 - 2041
  • [4] Ongoing EEG artifact correction using blind source separation
    Ille, Nicole
    Nakao, Yoshiaki
    Yano, Shumpei
    Taura, Toshiyuki
    Ebert, Arndt
    Bornfleth, Harald
    Asagi, Suguru
    Kozawa, Kanoko
    Itabashi, Izumi
    Sato, Takafumi
    Sakuraba, Rie
    Tsuda, Rie
    Kakisaka, Yosuke
    Jin, Kazutaka
    Nakasato, Nobukazu
    CLINICAL NEUROPHYSIOLOGY, 2024, 158 : 149 - 158
  • [5] Removal of EEG noise and artifact using blind source separation
    Fitzgibbon, S. P.
    Powers, D. M. W.
    Pope, K. J.
    Clark, C. R.
    JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2007, 24 (03) : 232 - 243
  • [6] Frequency overlapped signal identification using blind source separation
    College of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    不详
    Chin J Mech Eng Engl Ed, 2006, 2 (286-289):
  • [7] Blind source separation using the maximum signal fraction approach
    Hundley, DR
    Kirby, MJ
    Anderle, M
    SIGNAL PROCESSING, 2002, 82 (10) : 1505 - 1508
  • [8] FREQUENCY OVERLAPPED SIGNAL IDENTIFICATION USING BLIND SOURCE SEPARATION
    WANG Junfeng College of Mechanical Science and Engineering
    Chinese Journal of Mechanical Engineering, 2006, (02) : 286 - 289
  • [9] Using Signal Invariants to Perform Nonlinear Blind Source Separation
    Levin, David N.
    INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2009, 5441 : 58 - 65
  • [10] Improved EEG Analysis Models and Methods Using Blind Source Separation
    Wang, Fasong
    Wang, Zhongyong
    Li, Rui
    PROCEEDINGS OF THE 2015 CHINESE INTELLIGENT AUTOMATION CONFERENCE: INTELLIGENT TECHNOLOGY AND SYSTEMS, 2015, 338 : 381 - 387