An Efficient Method Based on Conditional Generative Adversarial Networks for Imbalanced Fault Diagnosis of Rolling Bearing

被引:3
|
作者
Zheng, Taisheng [1 ,2 ]
Song, Lei [1 ]
Guo, Bingjun [1 ,2 ]
Liang, Haoran [1 ,2 ]
Guo, Lili [1 ,3 ]
机构
[1] Chinese Acad Sci, Key Lab Space Utilizat, Technol & Engn Ctr Space Utilizat, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Tsinghua Univ, Sch Software, Beijing, Peoples R China
关键词
fault diagnosis; rolling bearing; CGAN;
D O I
10.1109/phm-qingdao46334.2019.8942906
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fault diagnosis of rolling bearing has always been a vital component in industrial field, and effective fault diagnostic methods can guarantee normal progress of manufacturing production. However, the scarcity of fault samples in practical scenarios is still a vexed question, which will seriously affect the accuracy of data-driven diagnostic methods. For the settlement of above problem, this paper introduces a supervised generation model CGAN (Conditional Generative Adversarial Network) to generate multitudinal fault data, and replaces the real fault data with the generated one to constitute a new dataset to train the classifiers adequately. In order to verify the effectiveness of the proposed method, the experiments are carried out on both artificial dataset and real one. The results show that the generated data of CGAN not only has a high degree of similarity with the real data, but also effectively improves the fault diagnosis accuracy of rolling bearing.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] An Intelligent Fault Diagnosis Method for Imbalanced Nuclear Power Plant Data Based on Generative Adversarial Networks
    Dai, Yuntao
    Peng, Lizhang
    Juan, Zhaobo
    Liang, Yuan
    Shen, Jihong
    Wang, Shujuan
    Tan, Sichao
    Yu, Hongyan
    Sun, Mingze
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2023, 18 (04) : 3237 - 3252
  • [32] New method of fault diagnosis for rolling bearing imbalance data set based on generative adversarial network
    Guo J.
    Wang M.
    Sun L.
    Xu D.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (09): : 2825 - 2835
  • [33] Fault diagnosis based on conditional generative adversarial networks in nuclear power plants
    Qian, Gensheng
    Liu, Jingquan
    ANNALS OF NUCLEAR ENERGY, 2022, 176
  • [34] Imbalanced Learning for Fault Diagnosis Problem of Rotating Machinery Based on Generative Adversarial Networks
    Xie, Yuan
    Zhang, Tao
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 6017 - 6022
  • [35] Data augment method for machine fault diagnosis using conditional generative adversarial networks
    Wang, Jinrui
    Han, Baokun
    Bao, Huaiqian
    Wang, Mingyan
    Chu, Zhenyun
    Shen, Yuwei
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2020, 234 (12) : 2719 - 2727
  • [36] An evaluation method of conditional deep convolutional generative adversarial networks for mechanical fault diagnosis
    Luo, Jia
    Huang, Jinying
    Ma, Jiancheng
    Li, Hongmei
    JOURNAL OF VIBRATION AND CONTROL, 2022, 28 (11-12) : 1379 - 1389
  • [37] An evaluation method of conditional deep convolutional generative adversarial networks for mechanical fault diagnosis
    Luo, Jia
    Huang, Jinying
    Ma, Jiancheng
    Li, Hongmei
    JVC/Journal of Vibration and Control, 2022, 28 (11-12): : 1379 - 1389
  • [38] Novel imbalanced fault diagnosis method based on generative adversarial networks with balancing serial CNN and Transformer (BCTGAN)
    Chen, Hualin
    Wei, Jianan
    Huang, Haisong
    Wen, Long
    Yuan, Yage
    Wu, Jinxing
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 258
  • [39] Imbalanced Fault Diagnosis of Rotating Machinery Based on Deep Generative Adversarial Networks with Gradient Penalty
    Luo, Junqi
    Zhu, Liucun
    Li, Quanfang
    Liu, Daopeng
    Chen, Mingyou
    PROCESSES, 2021, 9 (10)
  • [40] Transfer learning method for bearing fault diagnosis based on fully convolutional conditional Wasserstein adversarial Networks
    Liu, Yong Zhi
    Shi, Ke Ming
    Li, Zhi Xuan
    Ding, Guo Fu
    Zou, Yi Sheng
    MEASUREMENT, 2021, 180