JACOBI FIELDS IN GEODESIC SURFACE CONGRUENCES

被引:5
|
作者
Cho, Yong Seung [1 ]
机构
[1] Ewha Womans Univ, Div Math & Phys Sci, Coll Nat Sci, Seoul 120750, South Korea
关键词
Nambu-Goto string action; geodesic surface congruence; geodesic surface deviation equation; Jacobi field; singularity; conformally symmetric manifold;
D O I
10.1142/S0219887810004877
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the Nambu-Goto string action in the space of the surfaces spanned by closed strings in a spacetime manifold, we investigated the geodesic surface equation in the space of surfaces joining two given strings and the geodesic surface deviation equation in geodesic surface congruence which yields a Jacobi field along a given geodesic surface, and singularities in geodesic surface congruences. In this paper, assuming that the singularity exists in geodesic surface congruences in a conformally symmetric manifold, we compute the Jacobi fields of the geodesic surface deviation equations and observe them.
引用
收藏
页码:1407 / 1412
页数:6
相关论文
共 50 条
  • [11] GEODESIC CONGRUENCES IN A FINSLER SPACE
    SRIVASTA.SC
    SINHA, RS
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1972, 52 (02): : 156 - &
  • [12] Geodesic congruences in warped spacetimes
    Ghosh, Suman
    Dasgupta, Anirvan
    Kar, Sayan
    PHYSICAL REVIEW D, 2011, 83 (08):
  • [13] CONGRUENCES OF TOTALLY GEODESIC SURFACES
    PLEBANSKI, JF
    ROZGA, K
    CLASSICAL AND QUANTUM GRAVITY, 1989, 6 (03) : 349 - 368
  • [14] GEODESIC SPHERES AND JACOBI VECTOR-FIELDS ON SASAKIAN SPACE-FORMS
    BLAIR, DE
    VANHECKE, L
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1987, 105 : 17 - 22
  • [15] CONGRUENCES FOR THE COEFFICIENTS OF THE JACOBI ELLIPTIC FUNCTIONS
    CARLITZ, L
    DUKE MATHEMATICAL JOURNAL, 1949, 16 (02) : 297 - 302
  • [17] Ramanujan Type Congruences and Jacobi Forms
    Bringmann, Kathrin
    Heim, Bernhard
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [18] Three Dimensional Face Surface Recognition by Geodesic Distance using Jacobi Iterations
    Ahdid, Rachid
    Said, Said
    Fakir, Mohamed
    Manaut, Bouzid
    Ouadid, Youssef
    Taifi, Khaddouj
    2017 14TH INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS, IMAGING AND VISUALIZATION (CGIV 2017), 2017, : 44 - 48
  • [19] GEODESIC CONGRUENCES AND INHOMOGENEOUS HEISENBERG-FERROMAGNET
    SYM, A
    WESSELIUS, W
    PHYSICS LETTERS A, 1987, 120 (04) : 183 - 186
  • [20] Geodesic congruences in the Palatini f(R) theory
    Shojai, Fatimah
    Shojai, Ali
    PHYSICAL REVIEW D, 2008, 78 (10):