A REPRESENTATION OF SPECIALIZED BIRMAN-WENZL-MURAKAMI ALGEBRA AND BERRY PHASE IN YANG-BAXTER SYSTEM

被引:2
|
作者
Gou, Lidan [1 ,2 ]
机构
[1] NE Normal Univ, Sch Phys, Changchun 130024, Peoples R China
[2] Changchun Univ Sci & Technol, Sch Sci, Changchun 130022, Peoples R China
关键词
Birman-Wenzl-Murakami algebra; Yang-Baxter equation; Berry phase; BRAID GROUP-REPRESENTATIONS; DELTA-FUNCTION INTERACTION; BODY PROBLEM; R-MATRIX; BAXTERIZATION; ENTANGLEMENT;
D O I
10.1142/S0219749910006320
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present an S-matrix, a solution of the braid relation. A matrix representation of specialized Birman-Wenzl-Murakami algebra is obtained. Based on which, a unitary R-matrix is generated via the Yang-Baxterization approach. Then we construct a Yang-Baxter Hamiltonian through the unitary R-matrix. Berry phase of this Yang-Baxter system is investigated in detail.
引用
收藏
页码:1187 / 1197
页数:11
相关论文
共 31 条
  • [21] Berry phase and quantum criticality in Yang-Baxter systems
    Chen, Jing-Ling
    Xue, Kang
    Ge, Mo-Lin
    ANNALS OF PHYSICS, 2008, 323 (10) : 2614 - 2623
  • [22] Entanglement and Berry Phase in a (3x3)-dimensional Yang-Baxter System
    Wang, Gangcheng
    Xue, Kang
    Sun, Chunfang
    Wang, Qingyong
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (10) : 2865 - 2875
  • [23] A representation of extra-special 2-group, entanglement, and Berry phase of two qubits in Yang-Baxter system
    Sezer, Hasan Cavit
    Heydari, Hoshang
    QUANTUM INFORMATION PROCESSING, 2012, 11 (06) : 1685 - 1694
  • [24] A representation of extra-special 2-group, entanglement, and Berry phase of two qubits in Yang-Baxter system
    Hasan Cavit Sezer
    Hoshang Heydari
    Quantum Information Processing, 2012, 11 : 1685 - 1694
  • [25] THE REPRESENTATIONS OF TEMPERLEY-LIEB ALGEBRA AND ENTANGLEMENT IN A YANG-BAXTER SYSTEM
    Sun, Chunfang
    Wang, Gangcheng
    Hu, Taotao
    Zhou, Chengcheng
    Wang, Qingyong
    Xue, Kang
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 (06) : 1285 - 1293
  • [26] Entanglement and Berry phase in a 9 × 9 Yang–Baxter system
    Chunfang Sun
    Kang Xue
    Gangcheng Wang
    Quantum Information Processing, 2009, 8 : 415 - 429
  • [27] BERRY PHASE IN YANG-BAXTER SYSTEMS AND BOGOLIUBOV HAMILTONIAN AS A DERIVATIVE OF DIRAC HAMILTONIAN VIA BRAID RELATION
    Ge, Mo-Lin
    Xue, Kang
    Chen, Jing-Ling
    STATISTICAL PHYSICS, HIGH ENERGY, CONDENSED MATTER AND MATHEMATICAL PHYSICS, 2008, : 395 - +
  • [28] Quantum phase transition, quantum fidelity and fidelity susceptibility in the Yang-Baxter system
    Hu, Taotao
    Yang, Qi
    Xue, Kang
    Wang, Gangcheng
    Zhang, Yan
    Li, Xiaodan
    Ren, Hang
    QUANTUM INFORMATION PROCESSING, 2017, 16 (01)
  • [29] METHOD OF CONSTRUCTING BRAID GROUP REPRESENTATION AND ENTANGLEMENT IN A 9 x 9 YANG-BAXTER SYSTEM
    Hu, Taotao
    Wang, Gangcheng
    Sun, Chunfang
    Zhou, Chengcheng
    Wang, Qingyong
    Xue, Kang
    REVIEWS IN MATHEMATICAL PHYSICS, 2009, 21 (09) : 1081 - 1090
  • [30] Quantum Phase Transition Like Phenomenon in a Two-Qubit Yang-Baxter System
    Wang, Gangcheng
    Xue, Kang
    Sun, Chunfang
    Hu, Taotao
    Zhou, Chengcheng
    Du, Guijiao
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (10) : 2499 - 2505