Machine learning with nonlinear state space models

被引:1
|
作者
Schuessler, Max [1 ]
机构
[1] Univ Siegen, Inst Mech & Control Engn Mechatron, Paul Bonatz Str 9-11, D-57076 Siegen, Germany
关键词
system identification; neural networks; machine learning;
D O I
10.1515/auto-2022-0089
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this dissertation, a novel class of model structures and associated training algorithms for building data-driven nonlinear state space models is developed. The new identification procedure with the resulting model is called local model state space network (LMSSN). Furthermore, recurrent neural networks (RNNs) and their similarities to nonlinear state space models are elaborated on. The overall outstanding performance of the LMSSN is demonstrated on various applications.
引用
收藏
页码:1027 / 1028
页数:2
相关论文
共 50 条
  • [1] Learning nonlinear state-space models for control
    Raiko, T
    Tornio, M
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 815 - 820
  • [2] Learning nonlinear state-space models using autoencoders
    Masti, Daniele
    Bemporad, Alberto
    AUTOMATICA, 2021, 129
  • [3] Learning nonlinear state-space models using deep autoencoders
    Masti, Daniele
    Bemporad, Alberto
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 3862 - 3867
  • [4] Exploiting Chaos in Learning System Identification for Nonlinear State Space Models
    Mehmet Ölmez
    Cüneyt Güzeliş
    Neural Processing Letters, 2015, 41 : 29 - 41
  • [5] Exploiting Chaos in Learning System Identification for Nonlinear State Space Models
    Olmez, Mehmet
    Guzelis, Cuneyt
    NEURAL PROCESSING LETTERS, 2015, 41 (01) : 29 - 41
  • [6] Machine Learning Barycenter Approach to Identifying LPV State-Space Models
    Romano, Rodrigo A.
    Lopes dos Santos, P.
    Pait, Felipe
    Perdicoulis, T-P
    Ramos, Jose A.
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 6351 - 6356
  • [7] An unsupervised ensemble learning method for nonlinear dynamic state-space models
    Valpola, H
    Karhunen, J
    NEURAL COMPUTATION, 2002, 14 (11) : 2647 - 2692
  • [8] Kernel-based learning of stable nonlinear state-space models
    Shakib, M. F.
    Toth, R.
    Pogromsky, A. Y.
    Pavlov, A.
    van de Wouw, N.
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 2897 - 2902
  • [9] Robust machine learning models: linear and nonlinear
    Giudici, Paolo
    Raffinetti, Emanuela
    Riani, Marco
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024,
  • [10] Optimization Approaches for Nonlinear State Space Models
    Schussler, Max
    Nelles, Oliver
    2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 3933 - 3938