Kernel-based learning of stable nonlinear state-space models

被引:0
|
作者
Shakib, M. F. [1 ,2 ]
Toth, R. [3 ,4 ]
Pogromsky, A. Y. [2 ]
Pavlov, A. [5 ]
van de Wouw, N. [2 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London, England
[2] Eindhoven Univ Technol, Dept Mech Engn, Eindhoven, Netherlands
[3] Eindhoven Univ Technol, Dept Elect Engn, Eindhoven, Netherlands
[4] Inst Comp Sci & Control, Budapest, Hungary
[5] NTNU, Dept Geosci & Petr, Trondheim, Norway
基金
英国工程与自然科学研究理事会;
关键词
SYSTEM-IDENTIFICATION; STABILITY; DYNAMICS;
D O I
10.1109/CDC49753.2023.1038331
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a kernel-based learning approach for black-box nonlinear state-space models with a focus on enforcing model stability. Specifically, we aim to enforce a stability notion called convergence which guarantees that, for any bounded input from a user-defined class, the model responses converge to a unique steady-state solution that remains within a positively invariant set that is user-defined and bounded. Such a form of model stability provides robustness of the learned models to new inputs unseen during the training phase. The problem is cast as a convex optimization problem with convex constraints that enforce the targeted convergence property. The benefits of the approach are illustrated by a simulation example.
引用
收藏
页码:2897 / 2902
页数:6
相关论文
共 50 条
  • [1] Kernel-Based State-Space Kriging for Predictive Control
    Carnerero, A. Daniel
    Ramirez, Daniel R.
    Limon, Daniel
    Alamo, Teodoro
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2023, 10 (05) : 1263 - 1275
  • [2] Kernel-Based State-Space Kriging for Predictive Control
    A.Daniel Carnerero
    Daniel R.Ramirez
    Daniel Limon
    Teodoro Alamo
    [J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10 (05) : 1263 - 1275
  • [3] A Kernel-based Approach to MIMO LPV State-space Identification and Application to a Nonlinear Process System
    Rizvi, Syed Z.
    Mohammadpour, Javad
    Toth, Roland
    Meskin, Nader
    [J]. IFAC PAPERSONLINE, 2015, 48 (26): : 85 - 90
  • [4] Learning nonlinear state-space models for control
    Raiko, T
    Tornio, M
    [J]. PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 815 - 820
  • [5] Learning nonlinear state-space models using autoencoders
    Masti, Daniele
    Bemporad, Alberto
    [J]. AUTOMATICA, 2021, 129
  • [6] Learning stochastically stable Gaussian process state-space models
    Umlauft, Jonas
    Hirche, Sandra
    [J]. IFAC JOURNAL OF SYSTEMS AND CONTROL, 2020, 12
  • [7] Learning nonlinear state-space models using deep autoencoders
    Masti, Daniele
    Bemporad, Alberto
    [J]. 2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 3862 - 3867
  • [8] Kernel-Based Identification of Incrementally Input-to-State Stable Nonlinear Systems
    Scandella, Matteo
    Bin, Michelangelo
    Parisini, Thomas
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 5127 - 5132
  • [9] BAYESIAN FILTERING FOR NONLINEAR STATE-SPACE MODELS IN SYMMETRIC α-STABLE MEASUREMENT NOISE
    Vila-Valls, Jordi
    Fernandez-Prades, Carles
    Closas, Pau
    Fernandez-Rubio, Juan A.
    [J]. 19TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2011), 2011, : 674 - 678
  • [10] An unsupervised ensemble learning method for nonlinear dynamic state-space models
    Valpola, H
    Karhunen, J
    [J]. NEURAL COMPUTATION, 2002, 14 (11) : 2647 - 2692