Kernel-based learning of stable nonlinear state-space models

被引:0
|
作者
Shakib, M. F. [1 ,2 ]
Toth, R. [3 ,4 ]
Pogromsky, A. Y. [2 ]
Pavlov, A. [5 ]
van de Wouw, N. [2 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London, England
[2] Eindhoven Univ Technol, Dept Mech Engn, Eindhoven, Netherlands
[3] Eindhoven Univ Technol, Dept Elect Engn, Eindhoven, Netherlands
[4] Inst Comp Sci & Control, Budapest, Hungary
[5] NTNU, Dept Geosci & Petr, Trondheim, Norway
基金
英国工程与自然科学研究理事会;
关键词
SYSTEM-IDENTIFICATION; STABILITY; DYNAMICS;
D O I
10.1109/CDC49753.2023.1038331
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a kernel-based learning approach for black-box nonlinear state-space models with a focus on enforcing model stability. Specifically, we aim to enforce a stability notion called convergence which guarantees that, for any bounded input from a user-defined class, the model responses converge to a unique steady-state solution that remains within a positively invariant set that is user-defined and bounded. Such a form of model stability provides robustness of the learned models to new inputs unseen during the training phase. The problem is cast as a convex optimization problem with convex constraints that enforce the targeted convergence property. The benefits of the approach are illustrated by a simulation example.
引用
收藏
页码:2897 / 2902
页数:6
相关论文
共 50 条
  • [21] State estimation for nonlinear state-space transmission models of tuberculosis
    Strydom, Duayne
    le Roux, Johan Derik
    Craig, Ian Keith
    [J]. RISK ANALYSIS, 2023, 43 (02) : 339 - 357
  • [22] Kernel-based learning of hierarchical multilabel classification models
    Department of Computer Science, PO Box 68, FI-00014 Helsinki, Finland
    不详
    [J]. J. Mach. Learn. Res., 2006, (1601-1626):
  • [23] Nonlinear state-space models with state-dependent variances
    Stroud, JR
    Müller, P
    Polson, NG
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (462) : 377 - 386
  • [24] State inference in variational Bayesian nonlinear state-space models
    Raiko, T
    Tornio, M
    Honkela, A
    Karhunen, J
    [J]. INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, PROCEEDINGS, 2006, 3889 : 222 - 229
  • [25] Gaussian Variational State Estimation for Nonlinear State-Space Models
    Courts, Jarrad
    Wills, Adrian
    Schon, Thomas
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 5979 - 5993
  • [26] Learning Nonlinear State-Space Models Using Smooth Particle-Filter-Based Likelihood Approximations
    Svensson, Andreas
    Lindsten, Fredrik
    Schon, Thomas B.
    [J]. IFAC PAPERSONLINE, 2018, 51 (15): : 652 - 657
  • [27] Decoupling nonlinear state-space models: case studies
    Dreesen, Philippe
    Esfahani, Alireza Fakhrizadeh
    Stoev, Julian
    Tiels, Koen
    Schoukens, Johan
    [J]. PROCEEDINGS OF ISMA2016 INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING AND USD2016 INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS, 2016, : 2639 - 2646
  • [28] Robust identification approach for nonlinear state-space models
    Liu, Xin
    Yang, Xianqiang
    [J]. NEUROCOMPUTING, 2019, 333 : 329 - 338
  • [29] Parameter estimation in a class of nonlinear state-space models
    Enescu, Mihai
    Koivunen, Visa
    [J]. 2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 193 - 196
  • [30] Decoupling Multivariate Polynomials for Nonlinear State-Space Models
    Decuyper, Jan
    Dreesen, Philippe
    Schoukens, Johan
    Runacres, Mark C.
    Tiels, Koen
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (03): : 745 - 750