New analytical method of solution to a nonlinear singular fractional Lane-Emden type equation

被引:2
|
作者
Omaba, McSylvester Ejighikeme [1 ]
机构
[1] Univ Hafr Al Batin, Coll Sci, Dept Math, POB 1803, Hafar al Batin 31991, Saudi Arabia
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 10期
关键词
well-posedness; growth bound; nonlinear fractional Lane-Emden equation; regularized incomplete beta function; new nalytical method; NUMERICAL INVESTIGATIONS; DESIGN; ALGORITHM;
D O I
10.3934/math.20221072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear singular fractional Lane-Emden type differential equation LCD alpha lambda a+phi(t) + LCD beta a+$(t, phi(t)) = 0, 0 < beta < alpha < 1, 0 < a < t & LE; T, t alpha-beta with an initial contition phi(a) = nu assumed to be bounded and non-negative, $ : [a, T] x R & RARR; R a Lipschitz continuous function, and LCD alpha a+,LC D beta a+ are Liouville-Caputo derivatives of orders 0 < alpha, beta < 1. A new analytical method of solution to the nonlinear singular fractional Lane-Emden type equation using fractional product rule and fractional integration by parts formula is proposed. Furthermore, we prove the existence and uniqueness and the growth estimate of the solution. Examples are given to illustrate our results.
引用
收藏
页码:19539 / 19552
页数:14
相关论文
共 50 条