New analytical method of solution to a nonlinear singular fractional Lane-Emden type equation

被引:2
|
作者
Omaba, McSylvester Ejighikeme [1 ]
机构
[1] Univ Hafr Al Batin, Coll Sci, Dept Math, POB 1803, Hafar al Batin 31991, Saudi Arabia
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 10期
关键词
well-posedness; growth bound; nonlinear fractional Lane-Emden equation; regularized incomplete beta function; new nalytical method; NUMERICAL INVESTIGATIONS; DESIGN; ALGORITHM;
D O I
10.3934/math.20221072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear singular fractional Lane-Emden type differential equation LCD alpha lambda a+phi(t) + LCD beta a+$(t, phi(t)) = 0, 0 < beta < alpha < 1, 0 < a < t & LE; T, t alpha-beta with an initial contition phi(a) = nu assumed to be bounded and non-negative, $ : [a, T] x R & RARR; R a Lipschitz continuous function, and LCD alpha a+,LC D beta a+ are Liouville-Caputo derivatives of orders 0 < alpha, beta < 1. A new analytical method of solution to the nonlinear singular fractional Lane-Emden type equation using fractional product rule and fractional integration by parts formula is proposed. Furthermore, we prove the existence and uniqueness and the growth estimate of the solution. Examples are given to illustrate our results.
引用
收藏
页码:19539 / 19552
页数:14
相关论文
共 50 条
  • [1] ON THE FRACTIONAL LANE-EMDEN EQUATION
    Davila, Juan
    Dupaigne, Louis
    Wei, Juncheng
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (09) : 6087 - 6104
  • [2] Approximate Solution to the Fractional Second-Type Lane-Emden Equation
    Abdel-Salam, E. A-B
    Nouh, M. I.
    ASTROPHYSICS, 2016, 59 (03) : 398 - 410
  • [3] A numerical method for solving singular fractional Lane-Emden type equations
    Nasab, A. Kazemi
    Atabakan, Z. Pashazadeh
    Ismail, A. I.
    Ibrahim, Rabha W.
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2018, 30 (01) : 120 - 130
  • [4] Analytical Solution of Fractional-Order Lane-Emden Type Pantograph Delay Differential Equation
    Richard Olu Awonusika
    Oluwaseun Akinlo Mogbojuri
    International Journal of Applied and Computational Mathematics, 2024, 10 (5)
  • [5] Approximate Solution to the Fractional Second-Type Lane-Emden Equation
    E. A-B. Abdel-Salam
    M. I. Nouh
    Astrophysics, 2016, 59 : 398 - 410
  • [6] EXISTENCE OF NONLINEAR LANE-EMDEN EQUATION OF FRACTIONAL ORDER
    Ibrahim, Rabha W.
    MISKOLC MATHEMATICAL NOTES, 2012, 13 (01) : 39 - 52
  • [7] A Deep-Learning-Based Method for Solving Nonlinear Singular Lane-Emden Type Equation
    He, Jing
    Long, Po
    Wang, Xinying
    He, Kun
    IEEE ACCESS, 2020, 8 (08): : 203674 - 203684
  • [8] Application of optimal homotopy asymptotic method for the analytic solution of singular Lane-Emden type equation
    Iqbal, S.
    Javed, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (19) : 7753 - 7761
  • [9] Wavelet solution of a strongly nonlinear Lane-Emden equation
    Tiwari, Diksha
    Verma, Amit K.
    Cattani, Carlo
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2022, 60 (10) : 2054 - 2080
  • [10] Analytical solution to the conformable fractional Lane-Emden type equations arising in astrophysics
    Abdel-Salam, Emad A-B
    Nouh, Mohamed, I
    Elkholy, Essam A.
    SCIENTIFIC AFRICAN, 2020, 8