Two-population dynamics in a growing network model

被引:0
|
作者
Ivanova, Kristinka [1 ]
Iordanov, Ivan [1 ]
机构
[1] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
关键词
Networks; Complex systems; Rate equation approach; Two-population dynamics; Stable triads; Terror networks;
D O I
10.1016/j.physa.2011.09.037
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a growing network evolution model with nodal attributes. The model describes the interactions between potentially violent V and non-violent N agents who have different affinities in establishing connections within their own population versus between the populations. The model is able to generate all stable triads observed in real social systems. In the framework of rate equations theory, we employ the mean-field approximation to derive analytical expressions of the degree distribution and the local clustering coefficient for each type of nodes. Analytical derivations agree well with numerical simulation results. The assortativity of the potentially violent network qualitatively resembles the connectivity pattern in terrorist networks that was recently reported. The assortativity of the network driven by aggression shows clearly different behavior than the assortativity of the networks with connections of non-aggressive nature in agreement with recent empirical results of an online social system. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1811 / 1821
页数:11
相关论文
共 50 条
  • [31] Attracting Poisson chimeras in two-population networks
    Lee, Seungjae
    Krischer, Katharina
    CHAOS, 2021, 31 (11)
  • [32] Effect of localized input on bump solutions in a two-population neural-field model
    Yousaf, Muhammad
    Wyller, John
    Tetzlaff, Tom
    Einevoll, Gaute T.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (02) : 997 - 1025
  • [33] Evidence for an ecological two-population model for white sharks (Carcharodon carcharias) in Australian waters
    Burke, T. G.
    Huveneers, C.
    Meyer, L.
    Hollins, J. P. W.
    Loseto, L.
    Werry, J. M.
    Hussey, N. E.
    WILDLIFE RESEARCH, 2025, 52 (03)
  • [34] Modelling the cyclic behaviour in a DTB crystallizer-a two-population balance model approach
    Menon, A. R.
    Kramer, H. J. M.
    Grievink, J.
    Jansens, P. J.
    JOURNAL OF CRYSTAL GROWTH, 2005, 275 (1-2) : E1373 - E1381
  • [35] Transient circulant clusters in two-population network of Kuramoto oscillators with different rules of coupling adaptation
    Kasatkin, D., V
    Nekorkin, V., I
    CHAOS, 2021, 31 (07)
  • [36] A Two-Population Extension of the Exponential Smoothing State Space Model with a Smoothing Penalisation Scheme
    Shi, Yanlin
    Tang, Sixian
    Li, Jackie
    RISKS, 2020, 8 (03) : 1 - 18
  • [37] Hedging Annuity Risks with the Age-Period-Cohort Two-Population Gravity Model
    Dowd, Kevin
    Cairns, Andrew J. G.
    Blake, David
    NORTH AMERICAN ACTUARIAL JOURNAL, 2021, 25 : S170 - S181
  • [38] Two-population model for anomalous low-temperature magnetism in geometrically frustrated magnets
    Schiffer, P
    Daruka, I
    PHYSICAL REVIEW B, 1997, 56 (21): : 13712 - 13715
  • [39] Two-population model for medial temporal lobe neurons: The vast majority are almost silent
    Magyar, Andrew
    Collins, John
    PHYSICAL REVIEW E, 2015, 92 (01):
  • [40] Localized activity patterns in two-population neuronal networks
    Blomquist, P
    Wyller, J
    Einevoll, GT
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 206 (3-4) : 180 - 212