Handwritten digit recognition by a mixture of local principal component analysis

被引:3
|
作者
Zhang, BL
Fu, MY
Yan, H
机构
[1] Univ Sydney, Dept Elect Engn, Sydney, NSW 2006, Australia
[2] Univ Newcastle, Dept Elect & Comp Engn, Newcastle, NSW 2308, Australia
关键词
neural networks; mixture of principal component analysis; handwritten digit recognition;
D O I
10.1023/A:1009673230776
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mixture of local principal component analysis (PCA) has attracted attention due to a number of benefits over global PCA. The performance of a mixture model usually depends on the data partition and local linear fitting. In this paper, we propose a mixture model which has the properties of optimal data partition and robust local fitting. Data partition is realized by a soft competition algorithm called neural 'gas' and robust local linear fitting is approached by a nonlinear extension of PCA learning algorithm. Based on this mixture model, we describe a modular classification scheme for handwritten digit recognition, in which each module or network models the manifold of one of ten digit classes. Experiments demonstrate a very high recognition rate.
引用
收藏
页码:241 / 251
页数:11
相关论文
共 50 条
  • [41] Footprint Recognition with Principal Component Analysis and Independent Component Analysis
    Khokher, Rohit
    Singh, Ram Chandra
    Kumar, Rahul
    MACROMOLECULAR SYMPOSIA, 2015, 347 (01) : 16 - 26
  • [42] FPGA Implementation of CNN for Handwritten Digit Recognition
    Xiao, Rui
    Shi, Junsheng
    Zhang, Chao
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 1128 - 1133
  • [43] Metaheuristics for Feature Selection in Handwritten Digit Recognition
    Seijas, Leticia M.
    Carneiro, Raphael F.
    Santana, Clodomir J., Jr.
    Soares, Larissa S. L.
    Bezerra, Sabrina G. T. A.
    Bastos-Filho, Carmelo J. A.
    2015 LATIN AMERICA CONGRESS ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2015,
  • [44] Neocognitron of a new version: Handwritten digit recognition
    Fukushima, K
    ARTIFICIAL NEURAL NETWORKS-ICANN 2001, PROCEEDINGS, 2001, 2130 : 987 - 992
  • [45] Handwritten Digit Recognition Using Bayesian ResNet
    Mhasakar P.
    Trivedi P.
    Mandal S.
    Mitra S.K.
    SN Computer Science, 2021, 2 (5)
  • [46] A Convolutional Neural Network for Handwritten Digit Recognition
    Guevara Neri, Maria Cristina
    Vergara Villegas, Osslan Osiris
    Cruz Sanchez, Vianey Guadalupe
    Nandayapa, Manuel
    Sossa Azuela, Juan Humberto
    INTERNATIONAL JOURNAL OF COMBINATORIAL OPTIMIZATION PROBLEMS AND INFORMATICS, 2020, 11 (01): : 97 - 105
  • [47] Handwritten digit recognition: A neural network demo
    van der Zwaag, BJ
    COMPUTATIONAL INTELLIGENCE: THEORY AND APPLICATIONS, PROCEEDINGS, 2001, 2206 : 762 - 771
  • [48] Handwritten digit recognition with fuzzy neural networks
    Zhao, Hongyu
    Ye, Wenxia
    Jin, Fan
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 1997, 32 (03): : 247 - 252
  • [49] Hypergeometric Laguerre Moment for Handwritten Digit Recognition
    Benzoubeir, S.
    Hmamed, A.
    Qjidaa, H.
    2009 INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS (ICMCS 2009), 2009, : 448 - 452
  • [50] Handwritten digit recognition system based on DSP
    Miao, Hongqing
    Yin, Lixin
    Huang, Suzhen
    Jisuanji Gongcheng/Computer Engineering, 2005, 31 (04): : 178 - 180