General Decay and Well-Posedness of the Cauchy Problem for the Jordan-Moore-Gibson-Thompson Equation With Memory

被引:6
|
作者
Boulaaras, Salah [1 ,2 ]
Chouch, Abdelbaki [3 ]
Ouchenane, Djamel [4 ]
机构
[1] Qassim Univ, Coll Sci & Arts, Dept Math, Al Ras, Saudi Arabia
[2] Univ Oran 1, Lab Fundamental & Appl Math Oran LMFAO, Ahmed Benbella, Algeria
[3] Univ El Oued, Lab Operator Theory & PDEs Fdn & Applicat, Fac Exact Sci, Dept Math, Box 789, El Oued 39000, Algeria
[4] Amar Teledji Laghouat Univ, Lab Pure & Appl Math, Laghouat, Algeria
关键词
Jordan-Moore-Gibson-Thompson (JMGT); General decay; Memory term; Relaxation function;
D O I
10.2298/FIL2105745B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Cauchy problem of a third order in time nonlinear equation known as the Jordan-Moore-Gibson-Thompson (JMGT) equation with the presence of both memory. Using the well known energy method combined with Lyapunov functionals approach, we prove a general decay result, and we show a local existence result in appropriate function spaces. Finally, we prove a global existence result for small data, and we prove the uniqueness of the generalized solution.
引用
收藏
页码:1745 / 1773
页数:29
相关论文
共 50 条
  • [21] DECAY RATES FOR THE MOORE-GIBSON-THOMPSON EQUATION WITH MEMORY
    Bounadja, Hizia
    Houari, Belkacem Said
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, 10 (03): : 431 - 460
  • [22] General Decay of the Moore-Gibson-Thompson Equation with Viscoelastic Memory of Type II
    Boulaaras, Salah
    Choucha, Abdelbaki
    Scapellato, Andrea
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [23] Moore-Gibson-Thompson equation with memory, part II: General decay of energy
    Lasiecka, Irena
    Wang, Xiaojun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (12) : 7610 - 7635
  • [24] The Cauchy-Dirichlet problem for the Moore-Gibson-Thompson equation
    Bucci, Francesca
    Eller, Matthias
    COMPTES RENDUS MATHEMATIQUE, 2021, 359 (07) : 881 - 903
  • [25] The Cauchy problem for the Moore-Gibson-Thompson equation in the dissipative case
    Chen, Wenhui
    Ikehata, Ryo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 292 : 176 - 219
  • [26] Wellposedness and Decay Rates for the Cauchy Problem of the Moore–Gibson–Thompson Equation Arising in High Intensity Ultrasound
    M. Pellicer
    B. Said-Houari
    Applied Mathematics & Optimization, 2019, 80 : 447 - 478
  • [27] General decay rate for a Moore–Gibson–Thompson equation with infinite history
    Wenjun Liu
    Zhijing Chen
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [28] Well-posedness and energy decay estimates in the Cauchy problem for the damped defocusing Schrodinger equation
    Cavalcanti, Marcelo M.
    Correa, Wellington J.
    Domingos Cavalcanti, Valeria N.
    Tebou, Louis
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (03) : 2521 - 2539
  • [29] Wellposedness and Decay Rates for the Cauchy Problem of the Moore-Gibson-Thompson Equation Arising in High Intensity Ultrasound
    Pellicer, M.
    Said-Houari, B.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 80 (02): : 447 - 478
  • [30] Well-posedness of the Cauchy problem for a shallow water equation on the circle
    Himonas, AA
    Misiolek, C
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 161 (02) : 479 - 495