General Decay and Well-Posedness of the Cauchy Problem for the Jordan-Moore-Gibson-Thompson Equation With Memory

被引:6
|
作者
Boulaaras, Salah [1 ,2 ]
Chouch, Abdelbaki [3 ]
Ouchenane, Djamel [4 ]
机构
[1] Qassim Univ, Coll Sci & Arts, Dept Math, Al Ras, Saudi Arabia
[2] Univ Oran 1, Lab Fundamental & Appl Math Oran LMFAO, Ahmed Benbella, Algeria
[3] Univ El Oued, Lab Operator Theory & PDEs Fdn & Applicat, Fac Exact Sci, Dept Math, Box 789, El Oued 39000, Algeria
[4] Amar Teledji Laghouat Univ, Lab Pure & Appl Math, Laghouat, Algeria
关键词
Jordan-Moore-Gibson-Thompson (JMGT); General decay; Memory term; Relaxation function;
D O I
10.2298/FIL2105745B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Cauchy problem of a third order in time nonlinear equation known as the Jordan-Moore-Gibson-Thompson (JMGT) equation with the presence of both memory. Using the well known energy method combined with Lyapunov functionals approach, we prove a general decay result, and we show a local existence result in appropriate function spaces. Finally, we prove a global existence result for small data, and we prove the uniqueness of the generalized solution.
引用
收藏
页码:1745 / 1773
页数:29
相关论文
共 50 条