Aerodynamic investigation on shifted-back vertical stroke plane of flapping wing in forward flight

被引:3
|
作者
Han, Jong-Seob [1 ]
Breitsamter, Christian [1 ]
机构
[1] Tech Univ Munich, Chair Aerodynam & Fluid Mech, Munich, Germany
关键词
shifted-back stroke plane; flapping wing; sweptback wing; aerodynamic model; forward flight; INSECT FLIGHT; ADVANCE RATIO; EDGE VORTICES; KINEMATICS; HAWKMOTH; ROTATION; DYNAMICS; MODEL;
D O I
10.1088/1748-3190/ac305f
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In order to properly understand aerodynamic characteristics in a flapping wing in forward flight, additional aerodynamic parameters apart from those in hover-an inclined stroke plane, a shifted-back stroke plane, and an advance ratio-must be comprehended in advance. This paper deals with the aerodynamic characteristics of a flapping wing in a shifted-back vertical stroke plane in freestream. A scaled-up robotic arm in a water towing tank was used to collect time-varying forces of a model flapping wing, and a semi-empirical quasi-steady aerodynamic model, which can decompose the forces into steady, quasi-steady, and unsteady components, was used to estimate the forces of the model flapping wing. It was found that the shifted-back stroke plane left a part of freestream as a non-perpendicular component, giving rise to a time-course change in the aerodynamic forces during the stroke. This also brought out two quasi-steady components (rotational and added-mass forces) apart from the steady one, even the wing moved with a constant stroke velocity. The aerodynamic model underestimated the actual forces of the model flapping wing even it can cover the increasingly distributed angle of attack of the vertical stroke plane with a blade element theory. The locations of the centers of pressure suggested a greater pressure gradient and an elongated leading-edge vortex along a wingspan than that of the estimation, which may explain the higher actual force in forward flight.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Improved Aerodynamic Model for Efficient Analysis of Flapping-Wing Flight
    Kim, Dae-Kwan
    Lee, Jun-Seong
    Han, Jae-Hung
    [J]. AIAA JOURNAL, 2011, 49 (04) : 868 - 872
  • [42] Deformation and aerodynamic performance of a flapping artificial butterfly wing in free flight
    Tanaka, H.
    Matsumoto, K.
    Shimoyama, I.
    [J]. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, 2008, 150 (03): : S53 - S54
  • [43] Aerodynamic forces and vortical structures in flapping butterfly's forward flight
    Yokoyama, Naoto
    Senda, Kei
    Iima, Makoto
    Hirai, Norio
    [J]. PHYSICS OF FLUIDS, 2013, 25 (02)
  • [44] Optimization of kinematic parameters of dragonfly wing section in forward flapping flight
    Ansari, Mohd, I
    Anwer, Syed F.
    Siddique, Mohammed H.
    Alam, Tabish
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2024,
  • [45] Aerodynamic performance of a two-dimensional flapping wing in asymmetric stroke
    Zhu, J. Y.
    Zhou, C. Y.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2014, 228 (05) : 641 - 651
  • [46] Force production and asymmetric deformation of a flexible flapping wing in forward flight
    Tian, Fang-Bao
    Luo, Haoxiang
    Song, Jialei
    Lu, Xi-Yun
    [J]. JOURNAL OF FLUIDS AND STRUCTURES, 2013, 36 : 149 - 161
  • [47] Ground effect on the aerodynamics of a flapping wing in forward flight: an experimental study
    Arasteh, Mostafa
    Azargoon, Yegane
    Djavareshkian, M. H.
    [J]. AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2023, 95 (04): : 525 - 534
  • [48] Experimental and Numerical Study of Forward Flight Aerodynamics of Insect Flapping Wing
    Nagai, Hiroto
    Isogai, Koji
    Fujimoto, Tatsumi
    Hayase, Toshiyuki
    [J]. AIAA JOURNAL, 2009, 47 (03) : 730 - 742
  • [49] Influences of flapping modes and wing kinematics on aerodynamic performance of insect hovering flight
    Wang, Chao
    Zhou, Chaoying
    Zhu, Xiaorui
    [J]. JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2020, 34 (04) : 1603 - 1612
  • [50] Influences of flapping modes and wing kinematics on aerodynamic performance of insect hovering flight
    Chao Wang
    Chaoying Zhou
    Xiaorui Zhu
    [J]. Journal of Mechanical Science and Technology, 2020, 34 : 1603 - 1612