Prediction of corneal permeability using artificial neural networks

被引:0
|
作者
Agatonovic-Kustrin, S
Evans, A
Alany, RG
机构
[1] Univ Auckland, Sch Pharm, Auckland 1, New Zealand
[2] Univ S Australia, Pharmaceut Res Ctr, Sch Pharmaceut Mol & Biomed Sci, Adelaide, SA 5001, Australia
来源
PHARMAZIE | 2003年 / 58卷 / 10期
关键词
D O I
暂无
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The purpose of this study was to develop a simple model for prediction of corneal permeability of structurally different drugs as a function of calculated molecular descriptors using artificial neural networks. A set of 45 compounds with experimentally derived values of corneal permeability (log C) was used to develop, test and validate a predictive model. Each compound was encoded with 1194 calculated molecular structure descriptors. A genetic algorithm was used to select a subset of descriptors that best describe corneal permeability coefficient log C and a supervised network with radial basis transfer function (RBF) was used to correlate calculated molecular descriptors with experimentally derived measures of corneal permeability. The best model, with 4 input descriptors and 12 hidden neurones was chosen, and the significance of the selected descriptors to corneal permeability was examined. Strong correlation of predicted with experimentally derived log C values (correlation coefficient greater than 0.87 and 0.83 respectively) was obtained for the training and testing data sets. The developed model could be useful for the rapid prediction of the corneal permeability of candidate drugs based on molecular structure alone as it does not require experimentally derived data.
引用
收藏
页码:725 / 729
页数:5
相关论文
共 50 条
  • [31] Prediction of lake eutrophication using artificial neural networks
    Huo, Shouliang
    He, Zhuoshi
    Su, Jing
    Xi, Beidou
    Zhang, Lieyu
    Zan, Fengyu
    INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION, 2015, 56 (1-4) : 63 - 78
  • [32] Prediction of crossroad passing using artificial neural networks
    Civilis, Alminas
    2006 SEVENTH INTERNATIONAL BALTIC CONFERENCE ON DATABASES AND INFORMATION SYSTEMS - PROCEEDINGS, 2006, : 229 - 234
  • [33] Prediction of accident severity using artificial neural networks
    Moghaddam, F. Rezaie
    Afandizadeh, Sh.
    Ziyadi, M.
    INTERNATIONAL JOURNAL OF CIVIL ENGINEERING, 2011, 9 (01) : 41 - 48
  • [34] Prediction of Breast Cancer Using Artificial Neural Networks
    Saritas, Ismail
    JOURNAL OF MEDICAL SYSTEMS, 2012, 36 (05) : 2901 - 2907
  • [35] Glucose Level Prediction Using Artificial Neural Networks
    Iancu, Eugen
    Iancu, Ionela
    Istrate, Dan
    Mota, Maria
    PROCEEDINGS OF THE 9TH WSEAS INTERNATIONAL CONFERENCE ON SIMULATION, MODELLING AND OPTIMIZATION, 2009, : 407 - +
  • [36] Ozone Concentration Prediction using Artificial Neural Networks
    Gavrila, Camelia
    REVISTA DE CHIMIE, 2017, 68 (10): : 2224 - 2227
  • [37] Horse Racing Prediction Using Artificial Neural Networks
    Davoodi, Elnaz
    Khanteymoori, Ali Reza
    RECENT ADVANCES IN NEURAL NETWORKS, FUZZY SYSTEMS & EVOLUTIONARY COMPUTING, 2010, : 155 - 160
  • [38] GPS Orbital Prediction Using Artificial Neural Networks
    Yousif, Hamad
    El-Rabbany, Ahmed
    PROCEEDINGS OF THE 2008 NATIONAL TECHNICAL MEETING OF THE INSTITUTE OF NAVIGATION - NTM 2008, 2008, : 773 - 780
  • [39] Prediction of Solar Radiation Using Artificial Neural Networks
    Faceira, Joao
    Afonso, Paulo
    Salgado, Paulo
    CONTROLO'2014 - PROCEEDINGS OF THE 11TH PORTUGUESE CONFERENCE ON AUTOMATIC CONTROL, 2015, 321 : 397 - 406
  • [40] Prediction of hydrocyclone performance using artificial neural networks
    Karimi, M.
    Dehghani, A.
    Nezamalhosseini, A.
    Talebi, S.H.
    Journal of the Southern African Institute of Mining and Metallurgy, 2010, 110 (05) : 207 - 212