Fokker-Planck model of hydrodynamics

被引:18
|
作者
Singh, S. K. [1 ]
Ansumali, Santosh [1 ]
机构
[1] Jawaharlal Nehru Ctr Adv Sci Res, Engn Mech Unit, Bangalore 560064, Karnataka, India
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 03期
关键词
SIMULATION MONTE-CARLO; DYNAMICS;
D O I
10.1103/PhysRevE.91.033303
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a phenomenological description of the hydrodynamics in terms of the Fokker-Planck (FP) equation for one-particle distribution function. Similar to the Boltzmann equation or the Bhatnager-Gross-Krook (BGK) model, this approach is thermodynamically consistent and has the H theorem. In this model, transport coefficients as well as the equation of state can be provided independently. This approach can be used as an alternate to BGK-based methods as well as the direct simulation Monte Carlo method for the gaseous flows.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] On the use of lattice Fokker-Planck models for hydrodynamics
    Moroni, D.
    Hansen, J. -P.
    Melchionna, S.
    Succi, S.
    EUROPHYSICS LETTERS, 2006, 75 (03): : 399 - 405
  • [2] Entropic Fokker-Planck kinetic model
    Gorji, M. Hossein
    Torrilhon, Manuel
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 430 (430)
  • [3] GENERALIZED FOKKER-PLANCK KINETIC MODEL
    GROSS, EP
    PHYSICAL REVIEW, 1967, 158 (01): : 146 - +
  • [4] OPTIMIZATION OF A MODEL FOKKER-PLANCK EQUATION
    Herty, Michael
    Joerres, Christian
    Sandjo, Albert N.
    KINETIC AND RELATED MODELS, 2012, 5 (03) : 485 - 503
  • [5] A DISCRETE MODEL OF THE FOKKER-PLANCK EQUATION
    VOLKOV, YA
    POLYUDOV, AN
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1987, 27 (3-4): : 71 - 80
  • [6] Fokker-Planck model for binary mixtures
    Agrawal, Samarth
    Singh, S. K.
    Ansumali, S.
    JOURNAL OF FLUID MECHANICS, 2020, 899
  • [7] FOKKER-PLANCK EQUATION
    DESLOGE, EA
    AMERICAN JOURNAL OF PHYSICS, 1963, 31 (04) : 237 - &
  • [8] FOKKER-PLANCK SOLUTION FOR A NEURONAL SPIKING MODEL
    Daniel, Derek J.
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 2009, 38 (07): : 383 - 391
  • [9] Angular moment model for the Fokker-Planck equation
    B. Dubroca
    J.-L. Feugeas
    M. Frank
    The European Physical Journal D, 2010, 60 : 301 - 307
  • [10] A Fokker-Planck Solver to Model MTJ Stochasticity
    Garcia-Redondo, Fernando
    Prabhat, Pranay
    Bhargava, Mudit
    IEEE 51ST EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC 2021), 2021, : 263 - 266