Bohr-type inequalities for bounded analytic functions of Schwarz functions

被引:3
|
作者
Hu, Xiaojun [1 ]
Wang, Qihan [1 ]
Long, Boyong [1 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 12期
关键词
Bohr radius; Bohr-Rogosinski radius; Bohr-type inequality; Bounded analytic functions; Schwarz functions; POWER-SERIES; THEOREM; RADIUS; SUBORDINATION;
D O I
10.3934/math.2021791
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, some new versions of Bohr-type inequalities for bounded analytic functions of Schwarz functions are established. Most of these inequalities are sharp. Some previous inequalities are generalized.
引用
收藏
页码:13608 / 13621
页数:14
相关论文
共 50 条
  • [31] Inequalities for the Coefficients of Schwarz Functions
    Zaprawa, Pawel
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (04)
  • [32] Fractional Ostrowski type inequalities for bounded functions
    Erden, Samet
    Budak, Huseyin
    Zeki Sarikaya, Mehmet
    Iftikhar, Sabah
    Kumam, Poom
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [33] Inequalities for the Coefficients of Schwarz Functions
    Paweł Zaprawa
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [34] Bohr-Rogosinski type inequalities for concave univalent functions
    Allu, Vasudevarao
    Arora, Vibhuti
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 520 (01)
  • [35] BOUNDED ANALYTIC FUNCTIONS
    AHLFORS, LV
    [J]. DUKE MATHEMATICAL JOURNAL, 1947, 14 (01) : 1 - 11
  • [36] BOUNDED ANALYTIC FUNCTIONS
    NEHARI, Z
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (05) : 354 - 366
  • [37] ON BOUNDED ANALYTIC FUNCTIONS
    NEHARI, Z
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 1 (02) : 268 - 275
  • [38] Bohr Inequality for Odd Analytic Functions
    Kayumov, Ilgiz R.
    Ponnusamy, Saminathan
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2017, 17 (04) : 679 - 688
  • [39] Bohr Radius for Certain Analytic Functions
    Jain, Naveen Kumar
    Yadav, Shalu
    [J]. MATHEMATICAL ANALYSIS I: APPROXIMATION THEORY, ICRAPAM 2018, 2020, 306 : 211 - 221
  • [40] Bohr Inequality for Odd Analytic Functions
    Ilgiz R Kayumov
    Saminathan Ponnusamy
    [J]. Computational Methods and Function Theory, 2017, 17 : 679 - 688