Fluid structure of 1D spinful Fermi gases with long-range interactions

被引:2
|
作者
Colella, E. [1 ]
Chiofalo, M. L. [2 ,3 ]
Barsanti, M. [4 ,5 ]
Rossini, D. [2 ,3 ]
Citro, R. [6 ,7 ]
机构
[1] Univ Innsbruck, Inst Theoret Phys, Tech Str 21-3, A-6020 Innsbruck, Austria
[2] Univ Pisa, Dipartimento Fis Enrico Fermi, Largo Bruno Pontecorvo 3, I-156127 Pisa, Italy
[3] Univ Pisa, Ist Nazl Fis Nucl, Largo Bruno Pontecorvo 3, I-156127 Pisa, Italy
[4] Univ Pisa, Dipartimento Ingn Civile & Ind, I-56124 Pisa, Italy
[5] Univ Pisa, Ist Nazl Fis Nucl, I-56124 Pisa, Italy
[6] Univ Salerno, Dipartimento Fis ER Caianiello, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
[7] Ist Nazl Fis Nucl, Sez Napoli, Grp Collegato Salerno, Salerno, Italy
关键词
cavity QED; superfluidity; strongly correlated fluids in 1D; spin density waves; density waves;
D O I
10.1088/1361-6455/ab410f
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discuss the fluid structure in the quantum phases of a 1D spinful Fermi gas of atoms interacting via an infinitely long-range coupling, as it may result from a photon-mediated two-body coupling in optical cavities. The system reveals a rich physics, where the spin/charge-density wave and superfluid-like order compete with each other. Following our previous work based on a combined mean-field, exact diagonalization and bosonization analysis, we provide the phase diagram of the system and discuss the structure of the fluid, addressing the main features in momentum space of the order parameters, momentum distribution and two-body correlations. We highlight that the nesting of the Fermi surface in 1D ultimately drives the formation of periodic structures commensurate with the cavity-induced mean-field potential.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] INFLUENCE OF LONG-RANGE INTERACTIONS ON STRUCTURE OF MYOGLOBIN
    EPAND, RM
    SCHERAGA, A
    [J]. BIOCHEMISTRY, 1968, 7 (08) : 2864 - &
  • [22] Loss of Stability in a 1D Spin Model with a Long-Range Random Hamiltonian
    Littin, Jorge
    Maldonado, Cesar
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2023, 191 (01)
  • [23] Long-range memory elementary 1D cellular automata: Dynamics and nonextensivity
    Rohlf, Thimo
    Tsallis, Constantino
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (02) : 465 - 470
  • [24] Comment on "Delocalization in the 1D Anderson model with long-range correlated disorder"
    Kantelhardt, JW
    Russ, S
    Bunde, A
    Havlin, S
    Webman, I
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (01) : 198 - 198
  • [25] Short-time dynamics in the 1D long-range Potts model
    K. Uzelac
    Z. Glumac
    O. S. Barišić
    [J]. The European Physical Journal B, 2008, 63 : 101 - 108
  • [26] FINITE-RANGE SCALING STUDY OF THE 1D LONG-RANGE ISING-MODEL
    GLUMAC, Z
    UZELAC, K
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (20): : 4439 - 4452
  • [27] Continuous Symmetry Breaking in 1D Long-Range Interacting Quantum Systems
    Maghrebi, Mohammad F.
    Gong, Zhe-Xuan
    Gorshkov, Alexey V.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (02)
  • [28] Influence of the long-range interaction on the energy localization in 1D chain with an impurity
    Huang, SY
    Zou, XW
    Tan, ZJ
    Jin, ZZ
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 296 (3-4) : 426 - 436
  • [29] Loss of Stability in a 1D Spin Model with a Long-Range Random Hamiltonian
    Jorge Littin
    Cesar Maldonado
    [J]. Journal of Statistical Physics, 191
  • [30] AN IMPROVED LONG-RANGE POTENTIAL FOR O(1D)+H-2
    WALCH, SP
    HARDING, LB
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1988, 88 (12): : 7653 - 7661