Influence of the Duration of Microwave Irradiation of Scots Pine (Pinus sylvestris L.) Cones on the Quality of Harvested Seeds

被引:4
|
作者
Aniszewska, Monika [1 ]
Gendek, Arkadiusz [1 ]
Tulska, Ewa [1 ]
Peska, Paulina [1 ]
Moskalik, Tadeusz [2 ]
机构
[1] Warsaw Univ Life Sci SGGW, Dept Biosyst Engn, Inst Engn Mech, Nowoursynowska 164, PL-02787 Warsaw, Poland
[2] Warsaw Univ Life Sci SGGW, Dept Forest Utilizat, Inst Forest Sci, Nowoursynowska 159-34, PL-02776 Warsaw, Poland
来源
FORESTS | 2019年 / 10卷 / 12期
关键词
scots pine; cone; seeds; electromagnetic radiation; seed quality class; thermal imagery; NONIONIZING RADIATION; GERMINATION; APPLE;
D O I
10.3390/f10121108
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
To improve the process of seed extraction, new solutions have been investigated in an attempt to develop guidelines for the construction of small seed extraction equipment. One of the solutions proposed in this field is the use of electromagnetic radiation in the first stage of hulling cones, reducing their initial moisture content, which will result in quicker scale opening. It is proposed that cones should be irradiated for a relatively short period in the first stage. This operation will allow a quicker loss of moisture from the cones that are still closed, which will result in a more intensive opening of cone scales and will also positively affect the exposure of seeds for the next phase of hulling. The aim of the study was to evaluate the effect of microwave irradiation of pine cones on the quality of the seeds obtained. Cones were exposed to microwaves produced by an 800 W generator. The research was performed in several modes, in which the variable parameters were the duration of microwave irradiation, arrangement of cones with the apex pointed towards either the inner or outer part of the turntable, and the number of cones. The temperature distribution on the surface of and inside the cones was determined using the THERM v2 (Vigo System SA, O(z) over dotarow Mazowiecki, Poland) thermal image processing software. We also assessed the energy (vitality) and germinability (quality class) of seeds that were not exposed and those after microwave treatment. The results of the research allowed us to state that, with the assumed parameters of the process, it is possible to obtain second quality class seeds after exposure to microwaves for 5 s. This result was comparable to the quality of seeds obtained without the use of microwaves. When the irradiation time was increased above 5 s, the vitality of seeds decreased and their quality was not satisfactory.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Genetic variation for needle traits in Scots pine (Pinus sylvestris L.)
    Donnelly, Kevin
    Cavers, Stephen
    Cottrell, Joan E.
    Ennos, Richard A.
    TREE GENETICS & GENOMES, 2016, 12 (03)
  • [42] Recovery of Thermally Compressed Scots Pine (Pinus sylvestris L.) Wood
    Li, Lili
    Yu, Jianfang
    Shen, Yulin
    An, Yuhong
    Wang, Ximing
    BIORESOURCES, 2018, 13 (02): : 3793 - 3808
  • [43] The arthropod community of Scots pine (Pinus sylvestris L.) canopies in Norway
    Thunes, KH
    Skartveit, J
    Gjerde, I
    Stary, J
    Solhoy, T
    Fjellberg, A
    Kobro, S
    Nakahara, S
    zur Strassen, R
    Vierbergen, G
    Szadziewski, R
    Hagan, DV
    Grogan, WL
    Jonassen, T
    Aakra, K
    Anonby, J
    Greve, L
    Aukema, B
    Heller, K
    Michelsen, V
    Haenni, JP
    Emeljanov, AF
    Douwes, P
    Berggren, K
    Franzen, J
    Disney, RHL
    Prescher, S
    Johanson, KA
    Mamaev, B
    Podenas, S
    Andersen, S
    Gaimari, SD
    Nartshuk, E
    Soli, GEE
    Papp, L
    Midtgaard, F
    Andersen, A
    von Tschirnhaus, M
    Bächli, G
    Olsen, KM
    Olsvik, H
    Földvari, M
    Raastad, JE
    Hansen, LO
    Djursvoll, P
    ENTOMOLOGICA FENNICA, 2004, 15 (02) : 65 - 90
  • [44] Biochemical Adaptation of Scots Pine (Pinus sylvestris L.) to Technogenic Pollution
    O. V. Kalugina
    T. A. Mikhailova
    O. V. Shergina
    Contemporary Problems of Ecology, 2018, 11 : 79 - 88
  • [45] Verification of the Scots Pine (Pinus sylvestris L.) Crown Length Model
    Sporek, Monika
    Sporek, Kazimierz
    Kucerka, Martin
    APPLIED SCIENCES-BASEL, 2025, 15 (06):
  • [46] Monoterpene emission of a boreal Scots pine (Pinus sylvestris L.) forest
    Raisanen, Tommi
    Ryyppo, Aija
    Kellomaki, Seppo
    AGRICULTURAL AND FOREST METEOROLOGY, 2009, 149 (05) : 808 - 819
  • [47] Compounds composition of pollen tubes of Scots pine (Pinus sylvestris L.)
    Surso, Mikhail
    Khviyuzov, Sergei
    Chukhchin, Dmitry
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2023, 29 (09) : 1261 - 1268
  • [48] Genetic variation for needle traits in Scots pine (Pinus sylvestris L.)
    Kevin Donnelly
    Stephen Cavers
    Joan E. Cottrell
    Richard A. Ennos
    Tree Genetics & Genomes, 2016, 12
  • [49] Magnitude and timing of inbreeding depression in Scots pine (Pinus sylvestris L.)
    Koelewijn, HP
    Koski, V
    Savolainen, O
    EVOLUTION, 1999, 53 (03) : 758 - 768
  • [50] Activity of sucrose synthase, soluble acid invertase and fumarase in germinating seeds of Scots pine (Pinus sylvestris L.) of different quality
    Shen, TY
    Odén, PC
    SEED SCIENCE AND TECHNOLOGY, 1999, 27 (03) : 825 - 838