MRI-based Prostate and Dominant Lesion Segmentation using Deep Neural Network

被引:0
|
作者
Wang, Tonghe [1 ,3 ]
Lei, Yang [1 ]
Ojo, Olayinka A. Abiodun [2 ]
Akin-Akintayo, Oladunni O. [2 ]
Akintayo, Akinyemi A. [2 ]
Curran, Walter J. [1 ,3 ]
Liu, Tian [1 ,3 ]
Schuster, David M. [2 ,3 ]
Yang, Xiaofeng [1 ,3 ]
机构
[1] Emory Univ, Dept Radiat Oncol, Atlanta, GA 30322 USA
[2] Emory Univ, Dept Radiol & Imaging Sci, Atlanta, GA 30322 USA
[3] Emory Univ, Winship Canc Inst, Atlanta, GA 30322 USA
基金
美国国家卫生研究院;
关键词
MRI; Segmentation; Prostate; Dominant lesion; Deep learning; INTRAPROSTATIC LESIONS; DOSE-ESCALATION; CANCER;
D O I
10.1117/12.2581061
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this study, a learning-based method using mask R-CNN is proposed to automatically segment prostate and its dominant intraprostatic lesions (DILs) from magnetic resonance (MR) images. The mask R-CNN is able to perform end-to-end segmentation by locating the target region-of-interest (ROI) and then segmenting target within that ROI. The ROI locating step can improve the efficiency of the segmentation step by decreasing the image size. Dual attention networks are used as backbone in mask R-CNN to extract comprehensive features from MR images. The binary mask of targets of an arrival patient's MR image is generated by the well-trained network. To evaluate the proposed method, we retrospectively investigate 25 MRI datasets. On each dataset, prostate and DILs were delineated by physicians and was served as ground truth and training target. The proposed method was trained and evaluated by a five-fold cross validation strategy. The average centroid distance, volume difference and DSC value for prostate/DIL among all 25 patients are 0.85 +/- 2.62mm/2.77 +/- 2.13, 0.58 +/- 0.52cc/1.72 +/- 1.74cc and 0.95 +/- 0.09/0.69 +/- 0.12, respectively. The proposed method has shown accurate segmentation performance, which is promising in improving the efficiency and mitigating the observer-dependence in prostate and DIL contouring for DIL focal boost radiation therapy.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Review of MRI-based brain tumor image segmentation using deep learning methods
    Isin, Ali
    Direkoglu, Cem
    Sah, Melike
    12TH INTERNATIONAL CONFERENCE ON APPLICATION OF FUZZY SYSTEMS AND SOFT COMPUTING, ICAFS 2016, 2016, 102 : 317 - 324
  • [22] Deep convolutional neural network for prostate MR segmentation
    Tian, Zhiqiang
    Liu, Lizhi
    Fei, Baowei
    MEDICAL IMAGING 2017: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2017, 10135
  • [23] Deep Learning-Based Intraprostatic Lesion Segmentation Using Multi-Parametric MRI For Prostate Radiation Therapy
    Chen, Y.
    Xing, L.
    Bagshaw, H. P.
    Buyyounouski, M. K.
    Han, B.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : S100 - S100
  • [24] Ischemic Stroke Lesion Segmentation by Analyzing MRI Images Using Deep Convolutional Neural Networks
    Joshi, Shubham
    Gore, Sonal
    HELIX, 2018, 8 (05): : 3721 - 3725
  • [25] MRI-Based Prostate Proton Radiotherapy Using Deep-Learning-Based Synthetic CT
    Shafai-Erfani, G.
    Liu, Y.
    Lei, Y.
    Wang, Y.
    Wang, T.
    Tian, S.
    Jani, A.
    McDonald, M.
    Curran, W.
    Liu, T.
    Zhou, J.
    Yang, X.
    MEDICAL PHYSICS, 2019, 46 (06) : E476 - E477
  • [26] TBI LESION SEGMENTATION FROM MRI USING DEEP LEARNING
    Roy, Snehashis
    Butman, John
    Chan, Leighton
    Dzung Pham
    JOURNAL OF NEUROTRAUMA, 2018, 35 (16) : A152 - A152
  • [27] Automatic Segmentation of Prostate Structures Using a Convolutional Neural Network from Multiparametric MRI
    Huang, Xunan
    Liu, Bo
    Hao, Jiaxue
    Huyen Nguyen
    Knopp, Michael V.
    Miao, Qiguang
    Jia, Guang
    THIRD INTERNATIONAL SYMPOSIUM ON IMAGE COMPUTING AND DIGITAL MEDICINE (ISICDM 2019), 2019, : 92 - 96
  • [28] Development and external validation of an MRI-based neural network for brain metastasis segmentation in the AURORA multicenter study
    Buchner, Josef A.
    Kofler, Florian
    Etzel, Lucas
    Mayinger, Michael
    Christ, Sebastian M.
    Brunner, Thomas B.
    Wittig, Andrea
    Menze, Bjoern
    Zimmer, Claus
    Meyer, Bernhard
    Guckenberger, Matthias
    Andratschke, Nicolaus
    El Shafie, Rami A.
    Debus, Juergen
    Rogers, Susanne
    Riesterer, Oliver
    Schulze, Katrin
    Feldmann, Horst J.
    Blanck, Oliver
    Zamboglou, Constantinos
    Ferentinos, Konstantinos
    Wolff, Robert
    Eitz, Kerstin A.
    Combs, Stephanie E.
    Bernhardt, Denise
    Wiestler, Benedikt
    Peeken, Jan C.
    RADIOTHERAPY AND ONCOLOGY, 2023, 178
  • [29] Development and external Validation of an MRI-based Neural Network for the Segmentation of Brain Metastases in the AURORA Multicenter Study
    Buchner, J. A.
    Kofler, F.
    Mayinger, M.
    Brunner, T.
    Wittig, A.
    Menze, B.
    Zimmer, C.
    Meyer, B.
    Guckenberger, M.
    Andratschke, N.
    Shafie, R. A. E.
    Debus, J. Peter
    Rogers, S.
    Riesterer, O.
    Schulze, K.
    Feldmann, H. J.
    Blanck, O.
    Zamboglou, C.
    Ferentinos, K.
    Eitz, K. A.
    Combs, S.
    Bernhardt, D.
    Wiestler, B.
    Peeken, J.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2022, 198 (SUPPL 1) : S6 - S7
  • [30] MRI-Based Prostate HDR
    Mourtada, F.
    MEDICAL PHYSICS, 2016, 43 (06) : 3694 - 3695