Short-term power prediction for renewable energy using hybrid graph convolutional network and long short-term memory approach

被引:25
|
作者
Liao, Wenlong [1 ]
-Jensen, Birgitte Bak [1 ]
Pillai, Jayakrishnan Radhakrishna [1 ]
Yang, Zhe [1 ]
Liu, Kuangpu [1 ]
机构
[1] Aalborg Univ, AAU Energy, Aalborg, Denmark
关键词
Renewable energy; Power prediction; Graph convolutional network; Long short-term memory; Deep learning; NEURAL-NETWORK; MODEL;
D O I
10.1016/j.epsr.2022.108614
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate short-term solar and wind power predictions play an important role in the planning and operation of power systems. However, the short-term power prediction of renewable energy has always been considered a complex regression problem, owing to the fluctuation and intermittence of output powers and the law of dynamic change with time due to local weather conditions, i.e. spatio-temporal correlation. To capture the spatio-temporal features simultaneously, this paper proposes a new graph neural network-based short-term power forecasting approach, which combines the graph convolutional network (GCN) and long short-term memory (LSTM). Specifically, the GCN is employed to learn complex spatial correlations between adjacent renewable energies, and the LSTM is used to learn dynamic changes of power generation curves. The simulation results show that the proposed hybrid approach can model the spatio-temporal correlation of renewable energies, and its performance outperforms popular baselines on real-world datasets.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Classification of Power Quality Disturbances Using Convolutional Network and Long Short-Term Memory Network
    Rodrigues Junior, Wilson Leal
    Silva Borges, Fabbio Anderson
    Lira Rabelo, Ricardo de A.
    Alves de Lima, Bruno Vicente
    Almeida de Alencar, Jose Eduardo
    [J]. 2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [22] An Effective Short-Term Load Forecasting Methodology Using Convolutional Long Short Term Memory Network
    Rafi, Shafiul Hasan
    Nahid-Al Masood
    Deeba, Shohana Rahman
    [J]. PROCEEDINGS OF 2020 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2020, : 278 - 281
  • [23] A hybrid convolutional neural network with long short-term memory for statistical arbitrage
    Eggebrecht, P.
    Luetkebohmert, E.
    [J]. QUANTITATIVE FINANCE, 2023, 23 (04) : 595 - 613
  • [24] A Convolutional Long Short-Term Memory Neural Network Based Prediction Model
    Tian, Y. H.
    Wu, Q.
    Zhang, Y.
    [J]. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2020, 15 (05) : 1 - 12
  • [25] Antarctic sea ice prediction with A convolutional long short-term memory network
    Dong, Xiaoran
    Yang, Qinghua
    Nie, Yafei
    Zampieri, Lorenzo
    Wang, Jiuke
    Liu, Jiping
    Chen, Dake
    [J]. OCEAN MODELLING, 2024, 190
  • [26] Adaptive Clustering Long Short-Term Memory Network for Short-Term Power Load Forecasting
    Qi, Yuanhang
    Luo, Haoyu
    Luo, Yuhui
    Liao, Rixu
    Ye, Liwei
    [J]. ENERGIES, 2023, 16 (17)
  • [27] Short-term wind power prediction based on convolutional long-short-term memory neural networks
    Li, Ran
    Ma, Tao
    Zhang, Xiao
    Hui, Xu
    Liu, Yingpei
    Yin, Xiaogang
    [J]. Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (06): : 304 - 311
  • [28] Hybrid Convolutional Neural Network and Long Short-Term Memory Approach for Facial Expression Recognition
    Kavitha, M. N.
    RajivKannan, A.
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 35 (01): : 689 - 704
  • [29] Wind speed prediction using hybrid long short-term memory neural network based approach
    Yadav, G. Rakesh
    Muneender, E.
    Santhosh, M.
    [J]. 2021 INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY AND FUTURE ELECTRIC TRANSPORTATION (SEFET), 2021,
  • [30] Driver drowsiness detection using hybrid convolutional neural network and long short-term memory
    Jing-Ming Guo
    Herleeyandi Markoni
    [J]. Multimedia Tools and Applications, 2019, 78 : 29059 - 29087