A Practical Split-Window Algorithm for Retrieving Land Surface Temperature from Landsat-8 Data and a Case Study of an Urban Area in China

被引:55
|
作者
Jin, Meijun [1 ]
Li, Junming [2 ,3 ]
Wang, Caili [4 ]
Shang, Ruilan [3 ]
机构
[1] Taiyuan Univ Technol, Coll Architecture & Civil Engn, Taiyuan 030024, Peoples R China
[2] Chinese Acad Sci, Inst Geodesy & Geophys, Wuhan 430077, Peoples R China
[3] Shanxi Adm Surveying Mapping & Geoinformat, Taiyuan 030001, Peoples R China
[4] Henan Polytech Univ, Wanfang Coll Sci & Technol, Zhengzhou 451400, Peoples R China
关键词
HIGH-RESOLUTION RADIOMETER; DIFFERENCE VEGETATION INDEX; TRACK SCANNING RADIOMETER; HEAT-ISLAND; SATELLITE; EMISSIVITY; IMPACT; DERIVATION; METEOSAT; COVER;
D O I
10.3390/rs70404371
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper proposes a practical split-window algorithm (SWA) for retrieving land surface temperature (LST) from Landsat-8 Thermal Infrared Sensor (TIRS) data. This SWA has a universal applicability and a set of parameters that can be applied when retrieving LSTs year-round. The atmospheric transmittance and the land surface emissivity (LSE), the essential SWA input parameters, of the Landsat-8 TIRS data are determined in this paper. We also analysed the error sensitivity of these SWA input parameters. The accuracy evaluation of the proposed SWA in this paper was conducted using the software MODTRAN 4.0. The root mean square error (RMSE) of the simulated LST using the mid-latitude summer atmospheric profile is 0.51 K, improving on the result of 0.93 K from Rozenstein (2014). Among the 90 simulated data points, the maximum absolute error is 0.99 degrees C, and the minimum absolute error is 0.02 degrees C. Under the Tropical model and 1976 US standard atmospheric conditions, the RMSE of the LST errors are 0.70 K and 0.63 K, respectively. The accuracy results indicate that the SWA provides an LST retrieval method that features not only high accuracy but also a certain universality. Additionally, the SWA was applied to retrieve the LST of an urban area using two Landsat-8 images. The SWA presented in this paper should promote the application of Landsat-8 data in the study of environmental evolution.
引用
收藏
页码:4371 / 4390
页数:20
相关论文
共 50 条
  • [41] Correlation analysis of land surface temperature on landsat-8 data of Visakhapatnam Urban Area, Andhra Pradesh, India
    Nikkala, Samyuktha
    Peddada, Jagadeeswara Rao
    Neredimelli, Ramu
    [J]. EARTH SCIENCE INFORMATICS, 2022, 15 (03) : 1963 - 1975
  • [42] Correlation analysis of land surface temperature on landsat-8 data of Visakhapatnam Urban Area, Andhra Pradesh, India
    Samyuktha Nikkala
    Jagadeeswara Rao Peddada
    Ramu Neredimelli
    [J]. Earth Science Informatics, 2022, 15 : 1963 - 1975
  • [43] Land surface temperature retrieval from METOP-AVHRR3 data using a Split-Window algorithm
    Jimenez-Munoz, J. C.
    Sobrino, J. A.
    [J]. REVISTA DE TELEDETECCION, 2009, (32): : 40 - 49
  • [44] Investigation and Validation of Split-Window Algorithms for Estimating Land Surface Temperature from Landsat 9 TIRS-2 Data
    Su, Qinghua
    Meng, Xiangchen
    Sun, Lin
    [J]. Remote Sensing, 2024, 16 (19)
  • [45] A generalized split-window algorithm for land surface temperature estimation from MSG-2/SEVIRI data
    Gao, Caixia
    Tang, Bo-Hui
    Wu, Hua
    Jiang, Xiaoguang
    Li, Zhao-Liang
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (12) : 4182 - 4199
  • [46] A Modified Transfer-Learning-Based Approach for Retrieving Land Surface Temperature From Landsat-8 TIRS Data
    Ye, Xin
    Hui, Jian
    Wang, Pengxin
    Zhu, Jian
    Yang, Bin
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [47] An operative Land Surface Temperature split-window algorithm: Application to the Korean Peninsula Pathfinder AVHRR land data
    Chahboun, A
    Raissouni, N
    Sobrino, JA
    Essaaidi, M
    [J]. IGARSS 2005: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, PROCEEDINGS, 2005, : 2452 - 2455
  • [48] Comparison of Land Surface Temperature Algorithm Using Landsat-8 Data for South Korea
    Choi, Sungwon
    Lee, Kyeong-Sang
    Seo, Minji
    Seong, Noh-Hun
    Jin, Donghyun
    Jung, Daeseong
    Sim, Suyoung
    Jung, Im Gook
    Han, Kyung-Soo
    [J]. KOREAN JOURNAL OF REMOTE SENSING, 2021, 37 (01) : 153 - 160
  • [49] Evapotranspiration Retrieval Using S-SEBI Model with Landsat-8 Split-Window Land Surface Temperature Products over Two European Agricultural Crops
    Garcia-Santos, Vicente
    Niclos, Raquel
    Valor, Enric
    [J]. REMOTE SENSING, 2022, 14 (11)
  • [50] Estimating Land Surface Temperature from Landsat-8 Data using the NOAA JPSS Enterprise Algorithm
    Meng, Xiangchen
    Cheng, Jie
    Zhao, Shaohua
    Liu, Sihan
    Yao, Yunjun
    [J]. REMOTE SENSING, 2019, 11 (02)