Quasi-Atomistic Approach to Modeling of Liposomes

被引:4
|
作者
Petukhov, M., V [1 ,2 ]
Konarev, P., V [1 ,3 ]
Dadinova, L. A. [1 ]
Fedorova, N., V [4 ]
Volynsky, P. E. [5 ]
Svergun, D., I [6 ]
Batishchev, O., V [2 ]
Shtykova, E., V [1 ]
机构
[1] Russian Acad Sci, Fed Sci Res Ctr Crystallog & Photon, Shubnikov Inst Crystallog, Moscow 119333, Russia
[2] Russian Acad Sci, Frumkin Inst Phys Chem & Electrochem, Moscow 119071, Russia
[3] Natl Res Ctr, Kurchatov Inst, Moscow 123182, Russia
[4] Russian Acad Sci, Belozersky Inst Physicochem Biol, Moscow 119992, Russia
[5] Russian Acad Sci, Shemyakin Ovchinnikov Inst Bioorgan Chem, Moscow 117997, Russia
[6] European Mol Biol Lab, EMBL Hamburg Unit, Hamburg, Germany
基金
俄罗斯基础研究基金会;
关键词
X-RAY-SCATTERING; SMALL-ANGLE NEUTRON; LARGE UNILAMELLAR VESICLES; LIPID-BILAYER STRUCTURE; ASYMMETRIC VESICLES; MEMBRANE-PROTEINS;
D O I
10.1134/S1063774520020182
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Small-angle X-ray scattering is an important structural tool for studying biological membranes; however, interpretation of scattering data remains a challenging problem. In most cases, analysis makes it possible to determine some structural parameters and the electron density profile of lipid bilayers, but no methods providing more detailed information (e.g., about the structural organization of vesicles) have been proposed yet. An approach making it possible to determine the main integral characteristics of liposomes using small-angle scattering is presented in this study. Within this approach a quasi-atomic model of liposome is built from individual lipid molecules, which form a sphere or a hollow ellipsoid. The method has been implemented in a computer program, verified on experimental small-angle X-ray scattering data, and proposed to analyze the structure of lipid vesicles and their interactions with proteins.
引用
收藏
页码:258 / 263
页数:6
相关论文
共 50 条
  • [21] Robust mode space approach for atomistic modeling of realistically large nanowire transistors
    Huang, Jun Z.
    Ilatikhameneh, Hesameddin
    Povolotskyi, Michael
    Klimeck, Gerhard
    JOURNAL OF APPLIED PHYSICS, 2018, 123 (04)
  • [22] A new approach for atomistic modeling of Pd/Cu(110) surface alloy formation
    Garces, JE
    Bozzolo, GH
    Abel, P
    Mosca, HO
    APPLIED SURFACE SCIENCE, 2000, 167 (1-2) : 18 - 33
  • [23] Development of Continuum-Atomistic Approach for Modeling Metal Irradiation by Heavy Ions
    Batgerel, Bait
    Dimova, Stefka
    Puzynin, Igor
    Puzynina, Taisia
    Hristov, Ivan
    Hristova, Radoslava
    Tukhliev, Zafar
    Sharipov, Zarif
    MATHEMATICAL MODELING AND COMPUTATIONAL PHYSICS 2017 (MMCP 2017), 2018, 173
  • [24] Yielding and plastic behavior of amorphous atactic poly(oxypropylene): An atomistic modeling approach
    Jang, SS
    Jo, WH
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 215 : U335 - U335
  • [25] Phase transformation of poly(trimethylene terephthalate) in crystalline state: An atomistic modeling approach
    Jang S.S.
    Jo W.H.
    Fibers and Polymers, 2000, 1 (1) : 18 - 24
  • [26] Atomistic modeling of diffusion in aluminum
    Grabowski, S
    Kadau, K
    Entel, P
    PHASE TRANSITIONS, 2002, 75 (1-2) : 265 - 272
  • [27] Atomistic modeling of semiconductor interfaces
    Blom, Anders
    Stokbro, Kurt
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2013, 12 (04) : 623 - 637
  • [28] Atomistic modeling of mechanical behavior
    Li, J
    Ngan, AHW
    Gumbsch, P
    ACTA MATERIALIA, 2003, 51 (19) : 5711 - 5742
  • [29] Atomistic modeling of the effect of codoping on the atomistic structure of interfaces in α-alumina
    Tewari, Abhishek
    Galmarini, Sandra
    Stuer, Michael
    Bowen, Paul
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2012, 32 (11) : 2935 - 2948
  • [30] Atomistic modeling of multicomponent systems
    Bozzolo, G.
    Garces, J. E.
    JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION, 2007, 28 (01) : 23 - 37