A study is conducted on the feedback stabilization of resistive wall modes (RWMs) in a tokamak plasma using a toroidal shell model. An analytically tractable form of the RWM dispersion relation is derived in the presence of a set of discrete feedback coil currents. A parametric study is carried out to optimize the feedback system configuration. It is shown that the total toroidal angle of a resistive wall spanned by the feedback coils and the poloidal angular extent of a feedback coil are crucial parameters to determine the efficacy of the feedback system. (c) 2008 American Institute of Physics.