FPGA based implementation of a Hopfield neural network for solving constraint satisfaction problems

被引:0
|
作者
Abramson, D [1 ]
Smith, K [1 ]
Logothetis, P [1 ]
Duke, D [1 ]
机构
[1] Monash Univ, Sch Comp Sci & Software Engn, Clayton, Vic 3168, Australia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper discusses the implementation of Hopfield neural networks for solving constraint satisfaction problems using Field Programmable Gate Arrays (FPGAs). It discusses techniques for formulating such problems as discrete neural networks, and then it describes the N-Queen problem using this formulation. A prototype implementation of the a number of different N-Queen problems is described and results are presented that illustrate that a speedup of up to 3 orders of magnitude is possible using current FPGAs devices.
引用
收藏
页码:688 / 693
页数:2
相关论文
共 50 条
  • [1] Solving the Weighted Constraint Satisfaction Problems Via the Neural Network Approach
    Haddouch, Khalid
    Elmoutaoukil, Karim
    Ettaouil, Mohamed
    [J]. INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2016, 4 (01): : 56 - 60
  • [2] FPGA implementation of Hopfield neural network with transcendental nonlinearity
    Yang, Songtao
    Min, Fuhong
    Yang, Xilin
    Ying, Jiajie
    [J]. NONLINEAR DYNAMICS, 2024,
  • [3] FPGA implementation of pulse density Hopfield neural network
    Maeda, Yutaka
    Fukuda, Yoshinori
    [J]. 2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 700 - 704
  • [4] Lagrange neural network for solving constraint satisfaction problem
    Nakano, Takahiro
    Nagamatu, Masahiro
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2005, 1 (04): : 659 - 671
  • [5] Neural networks approach for solving the Maximal Constraint Satisfaction Problems
    Ettaouil, Mohamed
    Haddouch, Khalid
    Hami, Youssef
    Loqman, Chakir
    [J]. 2013 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS: THEORIES AND APPLICATIONS (SITA), 2013,
  • [6] FPGA implementation of hopfield neural network via simultaneous perturbation rule
    Wakamura, M
    Maeda, Y
    [J]. SICE 2003 ANNUAL CONFERENCE, VOLS 1-3, 2003, : 1272 - 1275
  • [7] Simplified Discrete Two-Neuron Hopfield Neural Network and FPGA Implementation
    Bao, Bocheng
    Tang, Haigang
    Bao, Han
    Hua, Zhongyun
    Xu, Quan
    Chen, Mo
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024,
  • [8] Solving fuzzy constraint satisfaction problems
    Meseguer, P
    Larrosa, J
    [J]. PROCEEDINGS OF THE SIXTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS I - III, 1997, : 1233 - 1238
  • [9] Solving quantified constraint satisfaction problems
    Gent, Ian P.
    Nightingale, Peter
    Rowley, Andrew
    Stergiou, Kostas
    [J]. ARTIFICIAL INTELLIGENCE, 2008, 172 (6-7) : 738 - 771
  • [10] A feedback neural network for solving convex constraint optimization problems
    Yang, Yongqing
    Cao, Jinde
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 201 (1-2) : 340 - 350